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Abstract

In 1960, H. Hadwiger [27] and V. Boltyanski [15] independently posed equivalent versions

of the same question: is it possible to illuminate any n-dimensional convex body by 2n

light sources? The affirmative answer to this question is called the Boltyanski-Hadwiger

Illumination Conjecture. It is one of the best known open problems in Discrete Geometry and

derives some of this prominence from its close relationship to the highly studied art gallery

problems [44] and from its equivalence to the Levi-Gohberg-Markus Covering Conjecture [14].

In the last fifty-five years, many partial results have been proved. For example, B. V.

Dekster [21] proved that eight directions illuminate three-dimensional convex bodies with

affine plane symmetry. The central feature of this thesis is a rigorous exposition of most

cases from Dekster’s proof. Three non-trivial theorems play a significant role in the proof:

the John-Löwner Theorem, the Blaschke Selection Theorem and Mazur’s Finite Dimensional

Density Theorem. Their proofs form another important part of this work.
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I am indebted to Professor Károly Bezdek for generously sharing his wealth of knowledge

and ideas, for his patience, sage advice, and for encouraging my independence. No words

can adequately thank my parents or my husband for everything they have done to help me

be successful and for their constant support.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Euclidean n-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Linear and Affine sets . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Examples of Linear and Affine Sets . . . . . . . . . . . . . . 8
2.2.3 Hyperplanes, Halfspaces and Slabs . . . . . . . . . . . . . . 9

2.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Linear and Affine Transformations . . . . . . . . . . . . . . . . . . . 12
2.5 Open and Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10.1 Support Hyperplanes and Separating Hyperplanes . . . . . . 24
2.11 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 The Blaschke Selection Theorem, Mazur’s Finite Dimensional Density Theo-
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Chapter 1

Introduction

A set is convex if it completely contains the line segment between any two of its points. In

addition to being convex, a convex body is a set which has interior points, includes all of its

boundary points and can be completely contained in some ball. The illumination problem

described by H. Hadwiger in 1960 [27] challenges geometers to find the minimum number of

external light sources required to illuminate the surface of any convex body.

The light source p illuminates the point b on the

boundary of the triangle but does not illuminate

the boundary points a or c.

The minimum number of light sources needed to

illuminate the triangle is three.

Figure 1.1

Independently, V. Boltyanski [15] asked an equivalent version of the same question in

an article from 1960; instead of using external light sources for illuminating convex bodies,

he proposed the use of directions. Both speculated that at most 2n external light sources

or directions were needed to illuminate the surface of an n-dimensional convex body. In

the same paper [15], Boltyanski proved that the problem of illuminating convex bodies is
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equivalent to an earlier problem posed by I. Gohberg and A. Markus, which asks whether it is

possible to cover every n-dimensional convex body by 2n smaller copies [25]. On a historical

note, F. Levi stated an equivalent version of the covering problem in 1955 and proved it in

the plane [36]. Unaware of Levi’s work, Gohberg and Marcus submitted their article in 1957,

which also included a proof of the covering conjecture in the plane, to Matematicheskoye

Prosveshcheniye [13]; the journal suspended publication at that time and their article was

not published until 1960.

The minimum number of smaller discs required

to cover the larger disc is 3.

The larger triangle can be covered by three

smaller copies

Figure 1.2

The Boltyanski-Hadwiger illumination problem and the equivalent Levi-Markus-Gohberg

covering problem are still open in dimensions greater than two. A solution to the illumination

conjecture for 3-dimensional convex bodies was announced by Boltyanski [16]; however, the

proposed proof still remains incomplete [10]. Currently, the best general upper bound on

the minimum number of light sources required to illuminate a 3-dimensional convex body,

in the literature, is 16 and is due to I. Papadoperakis [45].

Many results of the illumination and covering conjectures for special kinds of convex
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bodies have been established. For example, it is known that d-dimensional convex bodies

whose boundaries consist only of smooth points can be illuminated or covered by d` 1 light

sources or smaller copies, respectively (see [36], [15], [12]). In addition, K. Bezdek proved

the illumination conjecture holds for 3-dimensional convex polyhedra with affine symmetry

[11], M. Lassak proved that the illumination conjecture holds for centrally symmetric 3-

dimensional convex bodies [32] and B.V. Dekster proved the illumination conjecture holds

for 3-dimensional convex bodies with affine plane symmetry [21]. For a more comprehensive

account of the major results known about the illumination and covering conjectures and

their applications, the interested reader can consult the surveys in [10], [18] and [58].

The central focus of this thesis is to provide a rigorous account of B.V. Dekster’s partial

result [21]. Chapter 2 states definitions and basic theorems, which are required in Chapters

3 and 4. The proof of the illumination conjecture for 3-dimensional convex bodies with

affine plane symmetry relies on three non-trivial theorems: the Blaschke Selection Theorem,

Mazur’s Finite Dimensional Density Theorem and the John-Löwner Theorem. These three

theorems are proved in Chapter 3. Finally, Chapter 4 gives a rigorous exposition of Dekster’s

proof [21].

3



Chapter 2

Preliminaries

2.1 Euclidean n-Space

Let n be some positive integer strictly greater than 1. The set Rn is defined as all ordered

n-tuples of real numbers; namely, Rn “ tpx1, x2, . . . , xnq | xi P R, 1 ď i ď nu. An element

px1, x2, . . . , xnq of Rn is denoted by x and called a vector or point, interchangeably. Vectors

consist of coordinates. Specifically, the real numbers xi, for all 1 ď i ď n, are the coordinates

of the vector x “ px1, x2, . . . , xnq.

Addition between any two vectors x “ px1, x2, . . . , xnq and y “ py1, y2, . . . , ynq in Rn is

defined as follows:

x` y “ px1 ` y1, x2 ` y2, . . . , xn ` ynq.

Likewise, multiplication of any vector x “ px1, x2, . . . , xnq in En by a scalar λ P R is

defined by

λx “ pλx1, λx2, . . . , λxnq.

Geometrically, two vectors in Rn are said to be parallel if one can be written as a scalar

multiple of the other; in other words, the vectors x,y P Rn are parallel if there exists a real

number λ such that x “ λy. The vectors x and y in Rn are said to have the same direction

if there exists a real number λ ě 0 such that x “ λy. The vectors x and y in Rn are said to

have opposite directions if there exists a real number λ ă 0 such that x “ λy.

With the operations of vector addition and scalar multiplication defined above, Rn deter-

mines a vector space over the field of real numbers, R. The additive identity in Rn, known

as the origin or the zero vector, is denoted by o.

The operations of vector addition and scalar multiplication can be extended to sets, as
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follows. Given any two sets A and B in Rn, the Minkowski sum between these two sets is

defined by

A`B “ ta` b | a P A and b P Bu.

The Minkowski sum between a set A and some singleton set txu is called a translate of A

by x; it is commonly written as x` A. The Minkowski sum, A`B, may also be expressed

as the union of translates
ď

aPA

pa`Bq “
ď

bPB

pA` bq.

Proposition 2.1.1. Let A,B and C be subsets of Rn. If A Ď B, then A` C Ď B ` C.

Proof. Suppose A Ď B. Let x P A ` C be arbitrarily chosen. Then, there exists a P A and

c P C such that x “ a` c. However, a P A Ď B. Therefore, x “ a` c P B ` C. �

Figure 2.1: Minkowski Sum of Two 2-simplices

For any scalar λ P R and any set A in Rn, the set λA “ tλa | a P Au is called a scalar

multiple of A. The set A is said to be homothetic to the set B if there exists some real

number λ ‰ 0 and some vector x P Rn such that A “ λB ` x.

There is another operation between sets, known as the Cartesian product. For any two

sets A and B in Rn, the Cartesian product of these two sets is defined and denoted by

AˆB “ tpa,bq | a P A and b P Bu,
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where pa,bq is an ordered 2n-tuple and AˆB P Rnˆn “ Rn2
.

In addition to the operations of addition and scalar multiplication, there is another opera-

tion between vectors in Rn known as the inner product. Given two vectors x “ px1, x2, . . . , xnq

and y “ py1, y2, . . . , ynq in Rn, the inner product is a map which sends the ordered pair px,yq

in RnˆRn to the real number xx,yy “ x1y1` x2y2` . . .` xnyn. Notice that xx,yy “ xy,xy

and that xλx,yy “ xx, λyy “ λxx,yy, for any real number λ.

The inner product gives rise to the concept of the length or norm of a vector in Rn,

sometimes called the Euclidean norm. The Euclidean norm is defined to be a map which

sends a vector x in Rn to the real number }x} “
a

xx,xy. Notice that that }x} ą 0 for all

x ‰ o and }x} “ 0 if and only if x “ o. Also, notice that }λx} “ |λ|}x}, for any real number

λ.

Vectors in Rn of length one are called unit vectors. The set of all unit vectors in En is

the n´ 1-dimensional sphere:

Sn´1
“ tx P Rn

| }x} “ 1u .

The Euclidean distance between any two vectors x and y in Rn is found by taking the

Euclidean norm of the vectors x ´ y or y ´ x: namely, it is the real number found by

calculating }x´ y} “ }y ´ x}.

Stated below are two well-known inequalities: the Cauchy-Schwarz inequality and the

triangle inequality. Their proofs can be found on p. 3 of [9]. The so-called reverse triangle

inequality is also stated below. Its proof can be found on p. 584 of [24].

Theorem 2.1.2. Let x,y P Rn be arbitrarily chosen. Then,

(i) (Cauchy-Schwarz Inequality) | xx,yy | ď }x}}y}

(ii) (Triangle Inequality) }x` y} ď }x} ` }y}

(iii) (Reverse Triangle Inequality) |}x} ´ }y}| ď }x´ y}
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Note that equality holds for the Cauchy-Schwarz inequality if and only if either x “ λy

for some real number λ or y “ µx for some real number µ. Equality occurs in the triangle

inequality if and only if either x “ λy for some real number λ ě 0.

The angle between any non-zero vectors x and y in Rn is the real number θ, which

satisfies

cospθq “
xx,yy

}x}}y}

in the interval 0 ď θ ď π. The angle θ is uniquely determined in this interval. Notice that

the angle between the vectors λx and µy, for any real numbers λ, µ ą 0, is equivalent to the

angle between x and y.

The vector space Rn together with the Euclidean distance is a metric space called the

n-dimensional Euclidean space and is denoted by En.

2.2 Linear and Affine sets

A set S in En is called a linear subspace of En if for each pair of vectors x,y P S and for

any scalar λ P R, λx ` y P S. Similarly, a set A in En is said to be affine if for each pair

of vectors x,y P A and for λ P R, λx ` p1 ´ λqy P A. In other words, a set is affine if for

any two vectors in the set, the entire line through the vectors is contained by the set. Affine

sets and linear subspaces of En relate to each other in the following way; any affine set in En

containing the origin is a linear subspace of En. Two affine sets A and B in En are parallel

if one is a translate of the other.

A linear combination of the vectors x1,x2, . . . ,xm in En is λ1x1`λ2x2` . . .`λmxm for

any real numbers λ1, λ2, . . . , λm. If the scalars in the above linear combination satisfy the

further condition that λ1 ` λ2 ` . . . ` λm “ 1, then λ1x1 ` λ2x2 ` . . . ` λmxm is called an

affine combination of the vectors x1,x2, . . . ,xm in En. Given a set A in En, the set of all

affine combinations of the vectors of A is the affine hull of A, denoted by affpAq. The affine
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hull, affpAq, can also be described as the intersection of all affine sets in En containing A.

It should be noted that the intersection of an arbitrary family of affine sets is an affine set.

Also, recall the following. Given a set S in En, S is said to be linearly dependent if there

exist distinct vectors x1,x2, . . . ,xm in S and scalars λ1, λ2, . . . , λm, not all zero, such that

λ1x1 ` λ2x2 ` . . . ` λmxm “ 0. A set that is not linearly dependent is said to be linearly

independent.

2.2.1 Dimension

Let S be some linear subspace of En. If the vectors x1,x2, . . . ,xm in S are linearly inde-

pendent and if S can be written as the set of all linear combinations of these vectors, then

tx1,x2, . . . ,xmu is called the linear basis of S. The number of vectors in the linear basis is

the dimension of the linear subspace S, denoted dimpSq. The dimension of an affine set A

is the dimension of the linear subspace parallel to it. The dimension of a set B in En is the

dimension of the smallest affine set containing B, i.e. the affpBq.

2.2.2 Examples of Linear and Affine Sets

Given the terminology developed above, examples of linear and affine sets can now be mean-

ingfully provided.

The empty set H is a ´1-dimensional affine set, singleton sets are 0-dimensional affine

sets, lines are 1-dimensional affine sets, planes are 2-dimensional affine sets and hyperplanes

are n´ 1-dimensional affine sets in En.

The definition of parallel affine set given above does not obviously describe the behaviour

of two parallel lines in a plane but the following theorem does; the proof of the forwards

direction can be found on page 16 of [60] and the backwards direction follows directly from
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the definition of affine parallel sets.

Theorem 2.2.2.1. Two distinct lines `1 and `2, in some plane P of En, do not intersect if

and only if `1 and `2 are parallel.

Likewise, the singleton set t0u is the 0-dimensional linear set, lines passing through the

origin are 1-dimensional linear sets, planes containing the origin are 2-dimensional linear sets

and hyperplanes containing the origin are n´ 1-dimensional linear sets.

2.2.3 Hyperplanes, Halfspaces and Slabs

A hyperplane H in En is defined to be tx P En | xx,uy “ λ, u P Sn´1, λ P Ru. Note that

the unit vector u is normal to H. Two hyperplanes are parallel if and only if their unit

normal vectors are a scalar multiples.

The hyperplane H divides En into two half-spaces. Namely, the set of vectors lying

strictly to one side or the other of H are expressed as

H`
“ tx P En | xx,uy ą λ, u P Sn´1, λ P Ru

and

H´
“ tx P En | xx,uy ă λ, u P Sn´1, λ P Ru.

The half-spaces H` and H´ are open half-spaces determined by H. The closed half-spaces

determined by H are the set of vectors lying on and to one side or the other of H. They

are denoted by and defined as H`
“ tx P En | xx,uy ě λ, u P Sn´1, λ P Ru and

H´
“ tx P En | xx,uy ď λ, u P Sn´1, λ P Ru.

A slab in En is the closed connected region bounded by two distinct parallel hyperplanes.

Specifically, the slab between the hyperplanes H1 “ tx P En | xx,uy “ λ1, u P Sn´1u and

H2 “ tx P En | xx,uy “ λ2, u P Sn´1u, for λ1 ă λ2, is expressed by

slabrH1, H2s “ tx P En | λ1 ď xx,uy ď λ2, u P Sn´1
u.
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2.3 Matrices

A rectangular array of real numbers with m rows and n columns is called an m ˆ n matrix

and belongs to Emˆn. The pi, jq-entry of a real-valued m ˆ n matrix A is is the number in

the i-th row and j-th column of A and denoted by aij. Two matrices A and B are equal if

they have the same number of rows and columns, and if aij “ bij for all possible values of i

and j.

Let A and B be two matrices with the same number of rows and columns. The sum

A ` B is the matrix consisting of the entries aij ` bij for each i and j. If λ be some real

number and A some matrix, then the matrix λA consists of the entries λaij for each i and

j. Let A be an m ˆ n matrix. The n ˆm matrix whose entries are aji for any 1 ď j ď n

and 1 ď i ď m is called the transpose of A and is denoted by AT . A matrix with the same

number of rows as columns is called square. If A is square matrix with the property that

A “ AT , then A is called symmetric. A square matrix A is called diagonal if aij “ 0 for all

i ‰ j. Let A be an mˆn matrix and let B be an nˆ k matrix. Denote the i-th row of A by

ai “

ˆ

ai1 ai2 . . . ain

˙

and denote the j-column of B by b1j “

ˆ

bj1 bj2 . . . bjn

˙

. The

product AB is the mˆ k matrix whose pi, jq-entry is

@

ai,b
1
j

D

“ ai1b
1
j1 ` ai2b

1
j2 ` . . .` ainb

1
jn “ aTi b1j.

Note that, in general, AB ‰ BA. The nˆn diagonal matrix whose pi, iq-entries are equal to

1, for each 1 ď i ď n, is called the identity matrix and is denoted by In. Let A be an nˆ n

matrix. If there exists an n ˆ n matrix B such that AB “ In and BA “ In, then A is said

to be invertible and B is called the inverse of A; B is often written as A´1.

Below is a collection of several helpful properties of the transpose, matrix multiplication

and matrix inverses. Their proofs can be found on pages 32, 47, 56, 57 and 45 of [43] and

page 468 of [54], respectively.

Properties 2.3.1.
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(i) Let A be an mˆ n matrix. Then,
`

AT
˘T
“ A;

(ii) Let A be an mˆ n matrix. Then ImA “ A “ AIn;

(iii) Let the matrices B and C have the same number of rows and columns. Then,

A pB ˘ Cq “ AB ˘ AC and pB ˘ CqA “ BA ˘ CA, if the matrix A is sized

so that the products are defined;

(iv) Let A and B be matrices whose product is defined and let λ P R. Then,

λ pABq “ pλAqB “ A pλBq.

(v) Let A and B be two compatible matrices. Then, pABqT “ BTAT ;

(vi) If A is an invertible nˆ n matrix, then pA´1q
´1
“ A;

(vii) Let A and B be nˆ n invertible matrices. Then, pABq´1
“ B´1A´1;

(viii) Let A be an invertible n ˆ n matrix and let λ be a non-zero scalar. Then,

pλAq´1
“

1

λ
A´1;

(ix) Let A be an invertible matrix. Then,
`

AT
˘´1

“ pA´1q
T

.

(x) Let A1 and A2 be nˆ n matrices, let B1 and B2 be mˆm matrices, and let

C1 “

»

—

–

A1 X1

0 B1

fi

ffi

fl

and

C2 “

»

—

–

A2 X2

0 B2

fi

ffi

fl

be block matrices where 0 denotes an pm´ nq ˆ pm´ nq matrix whose entries

are all zeros. Then,

C1C2 “

»

—

–

A1A2 A1X2 `X1B2

0 B1B2

fi

ffi

fl

.
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(xi) Let A and B be square matrices and let

C “

»

—

–

A X

0 B

fi

ffi

fl

be a block matrix where 0 is a matrix whose entries are all zeros. Then, C is

invertible if and only if A and B are invertible and

C´1
“

»

—

–

A´1 ´A´1XB´1

0 B´1

fi

ffi

fl

.

2.4 Linear and Affine Transformations

A function T : En Ñ Em is a rule that assigns to every vector x P En a uniquely determined

vector T pxq in Em. Below, a basic but useful fact about functions is stated; see page A58

of [22] for its proof.

Proposition 2.4.1. Let T : X Ñ Y be a function and let A Ď B Ď X. Then, T pAq Ď T pBq.

Given the functions S, T : En Ñ Em and λ P R, define the sum S ` T , the scalar product

λT and composition S ˝ T by

pS ` T q pxq “ S pxq ` T pxq , pλT q pxq “ λT pxq

and

pS ˝ T q pxq “ S pT pxqq ,

for all x P En. The function iEn : En Ñ En defined by iEn pxq “ x, for all x P En is called the

identity function. A function T : En Ñ Em is said to be invertible if there exists a functions

T 1, T ‹ : Em Ñ En such that T ˝ T 1 “ iEm and T ‹ ˝ T “ iEn . The proposition below specifies

the relationship between the functions T 1 and T ‹; its proof can be found on page 22 of [57].

Proposition 2.4.2. Let T : En Ñ Em be a function such that T ˝T 1 “ iEm and T ‹ ˝T “ iEn

for some functions T 1, T ‹ : Em Ñ En. Then, T 1 “ T ‹ and the function T 1, called the inverse

of T , is unique.
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Let T : En Ñ Em be a function with the property that for each element y P Em there

exists a unique element x P En such that y “ T pxq. Then, the function T is called a

bijection. The following lemma connects the concepts of invertible functions to bijections;

its proof can be found on page 128 of [31].

Lemma 2.4.3. A function T : En Ñ Em is a bijection if and only if T is invertible.

If a function T : En Ñ Em satisfies the conditions

T px` yq “ T pxq ` T pyq and T pλxq “ λT pxq

for all x,y P En and λ P R, then T is called a linear transformation. The following theorem

relates linear transformations to matrices. Its proof can be found on pages 75 and 76 of [43].

Theorem 2.4.4. Let T : En Ñ Em be a transformation. If T is a linear transformation,

then T is induced by a unique matrix, A “

„

T pe1q T pe2q . . . T penq



; namely, T pxq “ Ax

for all x P En. If T is induced by an mˆ n matrix A, then T is a linear transformation.

The theorem below provides a criterion for determining whether a linear function is invertible.

It is proved on page 79 of [43].

Theorem 2.4.5. Let A be an nˆn matrix which induces the linear transformation T : En Ñ

En. Then, T is invertible if and only if the matrix A is invertible.

An important fact about the inverse of a linear transformation is exhibited in the next

lemma, which is proved on page 128 of [31].

Lemma 2.4.6. If T : En Ñ En is an invertible linear transformation, then its inverse T´1

is also a linear transformation.

In comparison, a transformation is called affine if it satisfies the property

T pλx` µyq “ λT pxq ` µT pyq,

13



for any x,y P En and any λ, µ P R such that λ`µ “ 1. Notice that every linear transforma-

tion is an affine transformation. However, the converse is not true: an affine transformation

T : En Ñ Em is linear if and only if T poq “ o (see Theorem 1.5.1 in [60]). The following

theorem allows us to more precisely understand the relationship between linear and affine

transformations. The first half of its proof can be found on p. 23 of [60]. The latter half is

not difficult to prove and it can be done with the help of (iii) and (iv) from Properties 2.3.1.

Theorem 2.4.7. Let T : En Ñ Em be a transformation. If T is an affine transformation,

then T is induced by the unique mˆ n matrix,

A “

„

T pe1q ´ T poq T pe2q ´ T poq . . . T penq ´ T poq



and the translate b “ T poq; namely, T pxq “ Ax ` b for any x P En. If T pxq “ Ax ` b for

all x P En, then T is an affine transformation.

Below are a collection of properties of the affine transformation, which geometrically

describe its action. Proofs of these properties can be found on pages 23 of [60], page 24

of [59], page 379 of [60], page 92 of [17], on pages 4 and 5 of [52], respectively.

Properties 2.4.8. Let T : En Ñ Em be an affine transformation.

(i) For any A Ď En, T
`

affpAq
˘

“ aff
`

T pAq
˘

. Hence, T pAq is an affine set if A is

an affine set.

(ii) If A Ď En is a convex set, then T pAq is convex.

(iii) Let A,B Ď En be parallel affine sets; namely, A “ B ` t for some t P En.

Then, the flats T pAq and T pBq are parallel in Em; i.e., there exists t1 P Em

such that T pAq “ T pBq ` t1.

(iv) Affine transformations preserve ratios of lengths along parallel lines.

(v) If A Ď En is a convex set, then T maps the extreme points of A onto the

extreme points of T pAq.

(vi) For any A Ď En, T
`

convpAq
˘

“ conv
`

T pAq
˘

.
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2.5 Open and Closed Sets

The open ball with radius r and centre a P En is the set of all vectors in En whose distance

from the vector a is strictly less than r and is denoted by Bpa, rq; i.e., Bpa, rq “ tx P

En | }a ´ x} ă ru. Similarly, the closed ball with radius r and centre a is denoted and

defined by Bra, rs “ tx P En | }a´ x} ď ru.

Open disc, Bpa, rq, in E2 Closed disc, Bra, rs, in E2

Figure 2.2

An element x of a set S in En is called an interior point of S if there exists a real

number r ą 0 such that an open ball with radius r whose centre is x is contained in S; i.e.,

Bpx, rq Ď S. The set of all interior points of S is called the interior of S and is denoted by

intpSq. Similarly, the relative interior of a set S is the collection of all elements x P S such

that Bpx, rq X affpSq Ď S, for some real number r ą 0. In other words, the relative interior

of a set S is its interior relative to its affine hull. Denote the relative interior of a set S by

relintpSq. Note that the relative interior of any affine set in En is itself and if intpSq ‰ H,

then relintpSq “ intpSq (see page 37 of [60]).

A set S is said to be open if each of its elements is an interior point of S. A set S is said

to be closed if its complement EnzS is open. The intersection of all closed sets containing

the set S we call the closure of S and denote it by clpSq.
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Below, is a collection of properties and examples of open and closed sets; proofs of all but

the last statement can be found on page 94 of [42], page 35 of [50], page 22 of [1], page 33

of [60], page 328 of [46], page 36 of [60] and page 99 of [42], respectively. The last statement

follows from the preceding statement and Corollary 2.10.8.

Theorem 2.5.1.

(i) Arbitrary intersections of closed sets are closed and arbitrary unions of open

sets are open.

(ii) The closure of any set is closed and the interior of any set is open.

(iii) Let A Ď X. If A is closed, then clpAq “ A. If A is open, then A “ intpAq.

(iv) Open balls in En are open.

(v) Sn´1 “ tz P En | }z} “ 1u is closed in En.

(vi) Affine sets in En are closed.

(vii) Finite point sets in En are closed.

(viii) Closed line segments in En are closed.

A topology on a set X is a collection, T , of subsets of X such that H and X belong to

T , the union of the elements from any sub-collection of T is also in T , and the intersection

of any finite sub-collection of T also belongs to T . The set X together with a topology T is

called a topological space. Euclidean n-space is an example of a topological space (see page

142 of [2]). A proof of the following statement can be found on page 94 of [42].

Theorem 2.5.2. Let Y be a subset of the topological space pX, T q. Then, a set A is closed

in Y with the subspace topology, TY “ tY X U | U P T u, if and only if A can be written as

the intersection of a closed set of pX, T q with Y.

A proof of the following statement is on page 96 of [42].
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Theorem 2.5.3. Let A be a subset of some topological space X. Then, x P clpAq if and only

if every open set U containing x intersects A.

The following theorem shows the relationship between interiors of sets and closures of

sets.

Theorem 2.5.4. Let A be a subset of some topological space X. Then,

clpXzAq “ XzintpAq.

Proof. First, it will be shown that clpXzAq Ď XzintpAq. Recall that intpAq is an open

set. It follows by definition that XzintpAq is closed. Let x P XzA be arbitrarily chosen.

Then, x P X and x R A. It follows that x R intpAq since intpAq Ď A. This implies that

x P XzintpAq. Therefore, XzA Ď XzintpAq. However, by definition clpXzAq is the smallest

closed set containing XzA. Thus, clpXzAq Ď XzintpAq.

Now, it will be shown that XzintpAq Ď clpXzAq. Let x P XzintpAq be arbitrarily chosen.

Then, x P X and x R intpAq. This implies that for every open set U containing x in

X, U Ę A. This means that U X pXzAq ‰ H, for every open set U containing x. By

Theorem 2.5.3, it follows that x P clpXzAq. Hence, XzintpAq Ď clpXzAq. �

A proof of the elementary but useful fact below can be found on page 1 of [29].

Lemma 2.5.5. Let A Ă B in some topological space X. Then, intpAq Ď intpBq.

The next result follows from Lemma 2.5.5 and Theorem 2.5.4.

Corollary 2.5.6. Let A Ă B in some topological space X. Then, clpAq Ď clpBq.

The boundary of a set S, which we denote by bdpSq, is the intersection of the closure of S

with the closure of its complement EnzS, i.e. bdpSq “ clpSqXclpEnzSq. The relative boundary

of a set S, relbdpSq, are all the elements which lie in the closure of S but which do not lie in

the relative interior of S. It follows directly from this definition that relbdpSqXrelintpSq “ H

and that relbdpSq Y relintpSq “ clpSq. Also, note that if affpSq “ En, relbdpSq “ bdpSq.

Furthermore, the relative boundary of any affine set in En is empty.
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Theorem 2.5.7. For any set S, clpSq “ intpSq Y bdpSq and intpSq X bdpSq “ H. Conse-

quently, bdpSq “ clpSqzintpKq.

2.6 Sequences

A sequence tskukPN in En converges to the vector s if for each real ε ą 0 there exists an

integer N such that for all k P N where k ą N , }sk ´ s} ă ε. Given the sequence tskukPN

in En and a sequence kiiPN of positive integers, such that k1 ă k2 ă k3 ă . . ., the sequence

tskiuiPN is called a subsequence of tskukPN.

Theorem 2.6.1. A sequence tskukPN converges to s if and only if every subsequence of

tskukPN converges to s.

A proof of the following theorem can be found on page 99 of [42].

Theorem 2.6.2. A sequence of points of En converges to at most one point of En.

See Lemma 21.2 on page 130 of [42] for a proof of the theorem below.

Theorem 2.6.3. Let X be a topological space and let S Ď X. If there exists a sequence of

points of S which converges to x, then x P clpSq. Moreover, if there exists a metric d̂ on X,

then the converse also holds.

The next theorem describes a useful property for sequences of real numbers; a proof of

the statement can be found on page 168 of [34].

Theorem 2.6.4. Let txkukPN and tykukPN be two convergent sequences of real numbers, which

converge to x P R and y P R respectively. If xk ď yk for all k P N, then x ď y.
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2.7 Bounded Sets

A set S in En is said to be bounded if there exists some real number M ě 0 such that for

every pair of vectors x1,x2 P S,

}x1 ´ x2} ďM.

An extremely useful property of bounded sequences in En, known as the Bolzano–

Weierstrass theorem, is stated below; a proof of this statement can be found on page 39

of [60].

Theorem 2.7.1. Every bounded sequence of points in En contains a convergent subsequence.

One consequence of the Bolzano-Weierstrass theorem is the following statement.

Corollary 2.7.2. Every bounded divergent sequence in En, has at least two limit points.

A well-known property for bounded sequences of real numbers that are either non-

increasing or non-decreasing, known as the monotone convergence theorem, is stated below;

its proof can be found on page 175 of [34].

Theorem 2.7.3. Let txkukPN be a bounded sequence of real numbers such that either xk ď

xk`1 or xk ě xk`1 for all k P N. Then, txkukPN converges.

2.8 Compact Sets

A set C is said to be compact if every collection of open subsets of C whose union contains

C can be reduced to a finite subcollection whose union also contains C.

Unlike in some metric spaces, the following characterization of compact sets holds in En.

Theorem 2.8.1. A set in En is compact if and only if it is closed and bounded.
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A proof of the last theorem can be found on page 40 of [60]. A subset of a compact set

may or may not be compact. The next result describes a condition which guarantees that

the property of compactness is passed down from a compact set to its subset; a proof of this

result can be found on pages 37 and 38 of [50].

Theorem 2.8.2. Closed subsets of compact sets are compact.

A proof of the claim below can be found on page 1 of [53].

Proposition 2.8.3. The finite union of compact sets is compact.

The following theorem combines the concepts of closed and compact sets to provide a

property for Minkowski sums; see page 43 of [60] for its proof.

Theorem 2.8.4. Let A Ď En be compact and B Ď En be closed. Then, A`B is closed.

Let A be a non-empty subset of En. For each x P En, the distance between A and x is

defined and denoted by

dpA,xq “ inf t}a´ x} | a P Au .

In general, the infimum in the definition above cannot be replaced with minimum. However,

the theorem below provides the conditions necessary for this replacement to occur; its proof

can be found on pages 46 and 47 of [60].

Theorem 2.8.5. If A,B P En are non-empty sets where A is closed and B is compact, then

there exist a0 P A and b0 P B such that

}a0 ´ b0} “ inf
aPA,bPB

}a´ b}.

Note that the points a0 and b0 are called the nearest points of A and B; they are not

necessarily unique.
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2.9 Continuous functions

Let f : X Ñ Y be a function. If S Ď Y , then the set of all elements of X whose images under

f lie in S is called the pre-image of S under f and is denoted by f´1pSq. Note that when

f is a bijection, the pre-image f´1 coincides with the inverse of f . A function f : X Ñ Y

is said to be continuous if for each open subset U of Y , the pre-image f´1pUq is an open

subset of X.

A generalized version of the Extreme Value Theorem from Calculus is presented below;

its proof can be found on page 174 of [42].

Extreme Value Theorem. Let f : X Ñ Y be a continuous function where Y is an

ordered set in the order topology. If X is compact, then there exists elements c, d P X such

that fpcq ď fpxq ď fpdq for every x P X.

Another useful fact about affine transformations is stated in the following lemma, which

is proved on pages 44 and 45 of [60].

Lemma 2.9.1. Affine transformations are continuous.

The next theorem describes the action of continuous functions on compact sets; see page

30 of [37] for its proof.

Theorem 2.9.2. Let f : X Ñ Y be a continuous function and let A Ď X be compact. Then,

the image of A under f , fpAq, is compact.

2.10 Convex Sets

A set is called convex if for any two vectors in the set, the line segment joining the two

vectors is also contained by the set. Explicitly, a set C in En is convex if λx` p1´ λqy P C

for any vectors x,y P C and any scalar λ P R where 1 ě λ ě 0.
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Convex set in E2 Non-convex set in E2

Figure 2.3

Below is a collection of important convex sets. Proofs of the last two facts can be found

on page 50 of [60].

Properties 2.10.1.

(i) Affine sets are convex.

(ii) Line segments are convex.

(iii) Halfspaces are convex.

(iv) Balls are convex.

It follows from (i) of Properties 2.10.1 that singleton sets and the empty set are convex.

Note that, like affine sets, convex sets have the following property; a proof of this property

can be found on page 50 of [60].

Theorem 2.10.2. The intersection of an arbitrary family of convex sets in En is convex.

The next property describes the interaction between convexity, Minkowski addition and

scalar multiplication; its proof can be found on page 51 of [60].

Theorem 2.10.3. If A Ď En is convex and λ1, λ1, . . . , λm ě 0, then

pλ1 ` λ1 ` . . .` λmqA “ λ1A` λ2A` . . .` λmA.
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A vector is said to be a convex combination of the vectors x1,x2, . . . ,xm in En if it can

be written as λ1x1` λ2x2` . . .` λmxm. The following theorem about convex combinations

is proved on page 50 of [60].

Theorem 2.10.4. Let c1, . . . , cm be elements of a convex set C in En. Then the convex

combination λ1c1 ` . . .` λmcm belongs to C for λ1, . . . , λm ě 0 with λ1 ` . . .` λm “ 1.

The convex hull of any set A in En, denoted by convpAq is the intersection of all convex

sets in En containing A. Let λ1, λ1, . . . , λm ě 0 be scalars with the property that λ1 ` λ2 `

. . . ` λm “ 1. Equivalently, the convex hull of any set A in En is the set of all convex

combinations of the vectors in A (see page 55 of [60]).

Two useful facts about the convex hull are stated below; sketches of their proofs are

outlined on page 54 of [60].

Proposition 2.10.5. The convex hull of any set S Ď En, convpSq, is the smallest convex

set containing S. Furthermore, if S Ď En is convex, then convpSq “ S.

Proposition 2.10.6. If A Ď B, then convpAq Ď convpBq.

The theorem and corollary below describe the action of the convex hull on open and

compact sets, respectively; the theorem is proved on pages 57 and 58 of [60].

Theorem 2.10.7. The convex hull of an open set in En is open and the convex hull of a

compact set in En is compact.

Corollary 2.10.8. The convex hull of a finite set in En is compact.

A proof of the next statement can be found on page 61 of [60].

Theorem 2.10.9. The relative interior of a non-empty convex set in En is non-empty.

The following theorem, although elementary, is extremely useful; it is proved on page 5

of [51] and page 62 of [60].
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Theorem 2.10.10. Let A Ď En be convex. If x P intpAq and y P clpAq, then rx,yq Ď intpAq.

Likewise, if x P relintpAq and y P clpAq, then rx,yq Ď relintpAq.

See page 61 of [60] for a proof of the corollary.

Corollary 2.10.11. Let A Ď En be convex. If x P intpAq and y P A, then rx,yq Ď intpAq.

See page 210 of [3] for an explanation of the corollary below.

Corollary 2.10.12. Every ray (half line) emanating from an interior point of a convex body

intersects the boundary of the convex body at exactly one point.

It immediately follows from Corollary 2.10.12 that any line passing through an interior

point of some convex body will intersect the boundary of the convex body at exactly two

points.

Lemma 2.10.13. Let A be a closed convex set. For any arbitrarily chosen x,y P bdpAq,

rx,ys Ď bdpSq or px,yq Ď intpSq.

Corollary 2.10.14. Let A Ď En be a convex body. Then, bdpAq is not convex.

The following statement is proved on page 62 of [60].

Theorem 2.10.15. Let S Ď En be a convex set. Then intpSq, relintpSq and clpSq are convex

sets.

See page 73 of [8] for a proof of the next theorem.

Theorem 2.10.16. Let K Ď E2 be a convex body. Then, bdpKq is a simple closed curve.

2.10.1 Support Hyperplanes and Separating Hyperplanes

Let K be a closed bounded convex set in En and let k P K be arbitrarily chosen. A

hyperplane H supports K if H XK ‰ H and either K Ď H` or K Ď H´. In addition, if

k P H XK, then the hyperplane H is said to support K at k. Any hyperplane that supports
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K is called a supporting hyperplane of K. Let H “ tx P E3 | xx,uy “ λ, u P Sn´1, λ P Ru

be a supporting hyperplane of K where K Ď H`. Then, ´u is an outward normal vector of

H and H` is called the supporting halfspace of K. Likewise, u is an outward normal vector

of H if H XK ‰ H and H´ is the supporting halfspace of K.

The following theorem is fundamental to the study of convex, discrete geometry; its proof

can be found on pages 31 to 38 of [39].

Theorem 2.10.1.1. Through each boundary point, x, of a closed, convex set C in En there

passes at least one hyperplane supporting C at x.

The question of how many parallel hyperplanes that support a convex body is answered

in the next theorem; a proof of the theorem can be found on page 8 of [19].

Theorem 2.10.1.2. Let C Ď En be some convex body. Then for each (closed affine) hyper-

plane H in En there exist exactly two supporting hyperplanes of C, which are parallel to H

in En.

Theorem 2.10.1.3. Every closed bounded convex set K in En is the intersection of all its

supporting half-spaces.

Proposition 2.10.1.4. Let S be a closed, convex set of En with non-empty interior. Suppose

that the hyperplane H “ tx P E3 | xx,uy “ λ, u P Sn´1, λ P Ru meets S but does not support

S. Then, H X intpSq ‰ H.

Proof. Suppose H does not support S but SXH ‰ H. It follows that S Ę H´ and S Ę H`.

This means that there exists elements s1, s2 P S such that s1 P H
´ “ tx P E3 | xx,uy ă

λ, u P Sn´1, λ P Ru and s2 P H
` “ tx P E3 | xx,uy ą λ, u P Sn´1, λ P Ru. By convexity,

rs1, s2s Ď S. Let

µ “
λ´ xs1,uy

xs2,uy ´ xs2,uy
.

Then,

xs1 ` µ ps2 ´ s1q ,uy “ xs1,uy `
λ´ xs1,uy

xs2,uy ´ xs1,uy

´

xs2,uy ´ xs1,uy
¯
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“ λ.

Notice that

xs2,uy ´ xs1,uy ą λ´ xs1,uy ą 0. (‹)

It follows that,
`

xs2,uy ´ xs1,uy
˘2
ą 0. Moreover,

1

xs2,uy ´ xs1,uy

´

xs2,uy ´ xs1,uy
¯2

“ xs2,uy ´ xs1,uy ą 0.

This means

1

xs2,uy ´ xs1,uy
ą 0.

Combine this inequality with (‹) to get that 0 ă µ ă 1.

Therefore, s1 ` µ ps2 ´ s1q P ps1, s2q XH Ď rs1, s2s XH Ď S XH.

Recall that since S is closed, it can be written as the union of the disjoint sets intpSq and

bdpSq. It follows that either s1 ` µ ps2 ´ s1q P intpSq or s1 ` µ ps2 ´ s1q P bdpSq.

Suppose s1 ` µ ps2 ´ s1q P intpSq. Then, there is nothing more to show.

Now, suppose that s1 ` µ ps2 ´ s1q P bdpSq. Then, rs1, s2s, rs1, s2q, ps1, s2s Ę intpSq. This

together with Theorem 2.10.10 and the convexity of intpSq imply that neither s1 P intpSq

nor s2 P intpSq. Therefore, rs1, s2s Ď bdpSq. Since intpSq ‰ H, there exists s1 P intpSq.

If s1 P H, then there is nothing more to show.

If s1 P H´, then let µ1 “
λ´ xs1,uy

xs2,uy ´ xs1,uy
and observe that, just like above,

xs1 ` µ1 ps2 ´ s1q ,uy “ xs1,uy `
λ´ xs1,uy

xs2,uy ´ xs1,uy

´

xs2,uy ´ xs
1,uy

¯

“ λ.

Moreover, a nearly identical proof to the one above used for µ will show that 0 ă µ1 ă 1. This

means that s1 ` µ1 ps2 ´ s1q P ps1, s2q XH. By Theorem 2.10.10, rs1, s2q Ď intpSq. Therefore,

s1 ` µ1 ps2 ´ s1q P intpSq XH.

If s1 P H`, then let µ2 “
λ´ xs1,uy

xs1,uy ´ xs1,uy
and notice that

xs1 ` µ
2
ps1 ´ s1q ,uy “ xs1,uy `

λ´ xs1,uy

xs1,uy ´ xs1,uy

´

xs1,uy ´ xs1,uy
¯
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“ λ.

A very similar proof to the one used above for µ will show that 0 ă µ2 ă 1. This means

that s1 ` µ2 ps1 ´ s1q P ps1, s
1q X H. Again, by Theorem 2.10.10, ps1, s

1s Ď intpSq. Thus,

s1 ` µ
2 ps1 ´ s1q P intpSq XH. �

Theorem 2.10.1.5. Let A and B in En be disjoint, non-empty convex sets. Then, there

exists a hyperplane H in En that properly separates A and B.

2.11 Cones

A non-empty set S Ď En is called a cone if for every λ ě 0 and every s P S, λs P S. All

cones contain the origin and all cones are unbounded sets, except for the trivial cone: tou.

Figure 2.4: Not all cones are convex. For example, the set tpx1, x2q | x1x2 ě 0u in E2 is a

cone which is not convex.

The following theorem provides a condition for determining when a cone is convex. Its

proof can be found on page 76 of [60].
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Theorem 2.11.1. Let S be a non-empty set in En. Then, S is a convex cone if and only if

λ1s1 ` λ2s2 P S for all s1, s2 P S and λ1, λ2 ě 0.

The set ts0 ` λs | s0 P En, s ‰ o, λ ě 0u is referred to as the ray emanating from s0 with

direction s. The ray together with the zero vector is a 1-dimensional convex cone. A cone

can be expressed as a union rays; the apex of a cone is the point from whence the rays

emanate. For example, the apex of the cone

ď

sPS

tλs | λ ě 0u

is the origin. Let S be a cone whose apex is the origin and let s0 ‰ o. The translate of S by

s0 together with the zero vector, ts0 ` λs | s P S, λ ě 0u Y tou, is a cone with apex s0.
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Chapter 3

The Blaschke Selection Theorem, Mazur’s Finite

Dimensional Density Theorem and the John - Löwner

Theorem

3.1 The Blaschke Selection Theorem

Let Kn denote the set containing all non-empty, compact, convex sets in En. The distance

between any two elements K1 and K2 of Kn is denoted and defined by

δ pK1, K2q “ max
!

max
k1PK1

min
k2PK2

}k1 ´ k2} , max
k2PK2

min
k1PK1

}k1 ´ k2}

)

.

The function δ : Kn ˆ Kn Ñ Kn is called the Hausdorff distance. The Hausdorff distance

between any two non-empty, compact convex sets in En has an equivalent formulation:

Proposition 3.1.1. Let K1, K2 P Kn be arbitrarily chosen. Then,

δ pK1, K2q “ min tλ ě 0 | K1 Ď K2 ` λB po, 1q , K2 Ď K1 ` λB po, 1qu .

A detailed proof of Proposition 3.1.2 can be found on p. 12 of [6].

Proposition 3.1.2. The set Kn together with δ is a metric space.

A sequence tXiu is called a Cauchy sequence in the metric space pX , d̂q if for all ε ą 0,

there exists an integer N such that

d̂ pXi, Xjq ă ε,

whenever i, j ě N . A metric space pX , d̂q is said to be complete if every Cauchy sequence in

X converges. A proof for the following property of Cauchy sequences can be found on page

20 of [37].
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Proposition 3.1.3. Every Cauchy sequence is bounded.

The following well-known theorem is needed in the proof of Lemma 3.1.4. The overall

structure and the second case of its proof is due to [4]; the first case is due to [30].

Cantor Intersection Theorem. Let tCiuiPN be a sequence of non-empty, compact sets

from En such that Ci`1 Ď Ci for all i P N. Then, the set

8
č

i“1

Ci

is a non-empty, compact set of En.

Proof. First, it will be shown that
Ş8

i“1Ci is compact.

Let x1,x2 P
Ş8

i“1Ci be arbitrarily chosen. Notice that
Ş8

i“1Ci Ď Ci, for each i P N. Each

Ci is compact in En and therefore, each Ci bounded in En. Since x1 and x2 also belong to

Ci, it follows that there exists a real number M such that }x1 ´ x2} ďM . Thus,
Ş8

i“1Ci is

bounded.

Each Ci is compact in En and therefore, each Ci is closed in En. It follows from Theorem 2.5.1

that
Ş8

i“1Ci is closed in En. Hence,
Ş8

i“1Ci is compact in En.

Finally, it will be shown that
Ş8

i“1Ci ‰ H in the following two cases.

Case 1: Suppose that not every Ci contains infinitely many points.

This means that there exists Ci0 P tCiuiPN such that 0 ă |Ci0 | ă 8. Since Ci is non-empty

and Ci`1 Ď Ci for all i P N, it follows that

8 ą |Ci0 | ě |Ci0`1| ě . . . ą 0.

The sequence t|Ci|uiěi0 is a bounded monotone decreasing sequence of integers. By Theo-

rem 2.7.3, the sequence t|Ci|uiěi0 converges; denote the number to which it converges by L.

Suppose for a contradiction that L P RzZ. Let ε “ min
 

rLs ´ L,L ´ tLu
(

. Recall that

rLs “ min tn P Z | n ě Lu and tLu “ max tm P Z | m ď Lu. It follows that

0 ă rLs´ L ă 1 and 0 ă L´ tLu ă 1.
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Since |Ci| P Z for all i ě i0, |Ci| cannot be any closer to L than the integers rLs or tLu.

Therefore,
ˇ

ˇ |Ci| ´ L
ˇ

ˇ ě rLs´ L and
ˇ

ˇ |Ci| ´ L
ˇ

ˇ ě L´ tLu,

for all i ě i0. Thus,
ˇ

ˇ |Ci| ´ L
ˇ

ˇ ě ε, for all i ě i0. This is a contradiction. Hence, L P Z.

Like above, let ε “ min
 

rLs´L,L´ tLu
(

. Since the sequence t|Ci|uiěi0 converges to L P Z,

there exists N P N such that
ˇ

ˇ |Ci| ´ L
ˇ

ˇ ă ε,

for all i ą N . Recall from above that 0 ă ε ă 1. The minimum distance between two

distinct integers is 1. Therefore,
ˇ

ˇ |Ci| ´L
ˇ

ˇ “ 0, for all i ą N . This means that |Ci| “ L, for

all i ą N . This implies two things: L ‰ 0, since each Ci ‰ H and Ci “ CN`1 for all i ą N ,

since Ci`1 Ď Ci for all i P N. Hence,

8
č

i“1

Ci “ CN`1 ‰ H.

Case 2: Suppose that each Ci has infinitely many points.

Let A “ tx1,x2, . . .u where xi P Ci. Since Ci`1 Ď Ci for all i P N, it follows that A Ď C1.

Recall that C1 is bounded. This together with the Bolzano Weierstrass Theorem implies that

A contains a convergent subsequence; denote the point to which the subsequence converges

by x.

By definition, this means that every open neighbourhood of x intersects A at some point

other than x. In fact, every open neighbourhood of x contains infinitely many points of

A. To see this, suppose for a contradiction that it is not so. This means that every open

neighbourhood of x contains only a finite number of points from A which are distinct from

x; denote these points by a1, a1, . . . , am. Let r “ min t}a1 ´ x}, }a2 ´ x}, . . . , }am ´ x}u.

Notice that r ą 0. Then, the open neighbourhood B
´

x,
r

2

¯

of x has empty intersection with

A. This is a contradiction.

Certainly, txi,xi`1, . . .u Ď A X Ci for each i P N. To see that any open neighbourhood

of x has non-empty intersection with Ci for all i P N, suppose for a contradiction that
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there exists an open neighbourhood U of x such that U X Ci “ H for some i P N. Then,

txi,xi`1, . . .u X U “ H. Notice that txi,xi`1, . . .u “ Az tx1,x2, . . . ,xi´1u and recall that

A X U ‰ H. It follows that A X U Ď tx1,x2, . . . ,xi´1u, which means that |AX U | ď i ´ 1

for some i P N. This contradicts that |AX U | ­ă 8.

By Theorem 2.5.3, x P cl pCiq for all i P N. Since each Ci is closed, x P Ci for all i P N.

Thus, x P
Ş8

i“1Ci. This means that
Ş8

i“1Ci ‰ H.

�

The lemma below is required in the proof of Theorem 3.1.5. The proof of the lemma is

due to [51].

Lemma 3.1.4. Let tKiuiPN be a sequence from Kn such that Ki`1 Ď Ki for all i P N. Then,

δ

˜

Ki ,
8
č

i“1

Ki

¸

Ñ 0

as iÑ 8.

Proof. It follows from Cantor Intersection Theorem and Theorem 2.10.2 that
8
č

i“1

Ki P Kn.

For simplicity, denote
Ş8

i“1Ki by K. To show that δ pKi , Kq Ñ 0 as iÑ 8, suppose for a

contradiction that δ pKi , Kq Û 0 as i Ñ 8. This means that there exists ε ą 0 such that

Ki Ę K ` εB po, 1q for all i P N. Let Ai “ Kizint
`

K ` εB po, 1q
˘

. Since Ki is non-empty

and Ki Ę K ` εB po, 1q, there exists x P Ki such that x R K ` εB po, 1q for all i P N. This

means x R int
`

K ` εB po, 1q
˘

, since int
`

K ` εB po, 1q
˘

Ď K ` εB po, 1q. Therefore, x P Ai

for all i P N. This means that Ai is non-empty for all i P N . Notice that Ai Ď Ki for all

i P N. Therefore, Ai is bounded in En for all i P N. Also, notice that

Ai “ Kizint
`

K ` εB po, 1q
˘

q

“ Ki X

´

Enzint
`

K ` εB po, 1q
˘

¯

“ Ki X cl
´

Enz
`

K ` εB po, 1q
˘

¯

.

Each Ki is closed and by Theorem 2.5.1, cl
´

Enz
`

K` εB po, 1q
˘

¯

is closed in En. Thus, each

Ai is closed in En. Hence, Ai is compact. Moreover, Ai`1 Ď Ai for all i P N. Therefore, it
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follows from Cantor Intersection Theorem that
Ş8

i“1Ai is non-empty.

It will be helpful to notice that K Ď int
`

K ` εB po, 1q
˘

. To see this, begin by arbitrarily

selecting x P K. Then, B px, εq “ x ` εB po, 1q Ď
Ť

kPK k ` εB po, 1q “ K ` εB po, 1q. By

definition, x P int
`

K`εB po, 1q
˘

. This, in particular, implies thatKzint
`

K`εB po, 1q
˘

“ H.

Now, observe that

K X

8
č

i“1

Ai “ K X

8
č

i“1

´

Kizint
`

K ` εB po, 1q
˘

¯

“ K X

´

K1zint
`

K ` εB po, 1q
˘

X

8
č

i“2

´

Kizint
`

K ` εB po, 1q
˘

¯

then, it follows from a basic set theory identity that

“ K1 X

´

Kzint
`

K ` εB po, 1q
˘

¯

X

8
č

i“2

´

Kizint
`

K ` εB po, 1q
˘

¯

“ HX

8
č

i“2

´

Kizint
`

K ` εB po, 1q
˘

¯

“ H.

Since each Ai Ď Ki, it follows that
Ş8

i“1Ai Ď K. This is a contradiction. Hence,

δ

˜

Ki ,
8
č

i“1

Ki

¸

Ñ 0,

as iÑ 8. �

The following theorem plays an essential role in the proof of The Blaschke Selection

Theorem. Its proof is also due to [51].

Theorem 3.1.5. The metric space pKn, δq is complete.

Proof. Let tKiuiPN be a Cauchy sequence in Kn and let

Am “ cl

˜

8
ď

i“m

Ki

¸

“ cl pKm YKm`1 Y . . .q .

Since Km`1 YKm`2 Y . . . Ď Km YKm`1 Y . . ., it follows from Corollary 2.5.6 that

Am`1 “ cl pKm`1 YKm`2 Y . . .q Ď cl pKm YKm`1 Y . . .q “ Am.
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Notice that

Ki Ď Km YKm`1 Y . . . Ď cl pKm YKm`1 Y . . .q “ Am, (‹)

for any i ě m and since each Ki P Kn is non-empty, it follows that Am is non-empty. Also,

each Am is closed by Theorem 2.5.1.

Claim:
8
ď

i“m

Ki is bounded for any m P N.

Let k1,k2 P
Ť8

i“mKi and i‹ P tm,m ` 1, . . .u be arbitrarily chosen. Then, there exists Ki

and Kj where i, j P tm,m ` 1, . . .u such that k1 P Ki and k2 P Kj. By Proposition 3.1.3,

there exists a real number M ě 0 such that δ pKp, Kqq ď M for all Kp, Kq P tKiuiPN. In

particular, this means that Ki Ď Ki‹ `MBn
po, 1q and Kj Ď Ki‹ `MBn

po, 1q. This implies

that there exists x,y P Ki‹ and b1,b2 P Bn
po, 1q such that k1 “ x`Mb1 and k2 “ y`Mb2.

Observe that

}k1 ´ k2} “ }x`Mb1 ´ py `Mb2q }

then, by the triangle inequality,

ď }x´ y} `M}b1 ´ b2}

then, using the triangle inequality again,

ď }x´ y} `M p}b1} ` | ´ 1| ¨ }b2}q

ď }x´ y} ` 2M

then, since each Ki is bounded there exists a real number Mi‹ ě 0 such that

ďMi‹ ` 2M.

To see that each Am is bounded, let a, a1 P Am be arbitrarily chosen. It follows from

Theorem 2.6.3 that there exists sequences taiuiPN and ta1jujPN whose elements belong to
8
ď

i“m

Ki and which converge to a and a1, respectively. Then,

}a´ a1} “
›

›pa´ aiq `
`

a1j ´ a1
˘

` pai ´ ajq
›

›
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then, by the triangle inequality,

ď |´1| }ai ´ a} ` }a1j ´ a1} ` }ai ´ aj}

then, since
8
ď

i“m

Ki is bounded,

ď |´1| }ai ´ a} ` }a1j ´ a1} `Mi‹ ` 2M

then, since ai Ñ a and a1j Ñ a1, there exists N1, N2 P N such that

ă
ε1

2
`
ε1

2
`M “ ε1 `Mi‹ ` 2M,

for all i ą N1 and j ą N2. Hence, each Am is compact.

By Lemma 3.1.4, the sequence tAmumPN converges to A “
8
č

i“1

Ai as m Ñ 8. Then, for

some ε ą 0, there exists N P N such that Am Ď A ` εBn
po, 1q, for any m ą N . It follows

from (‹) that Ki Ď Am Ď A` εBn
po, 1q, for all i ě m ą N .

Since tKiuiPN is a Cauchy sequence, there exists N 1 P N such that Kj Ď Ki `
ε

3
Bn
po, 1q

for all i, j ě N 1. Let N‹ “ maxtN,N 1u. It follows that for all i,m ě N‹ ` 1,

Km Ď Ki `
ε

3
Bn
po, 1q , Km`1 Ď Ki `

ε

3
Bn
po, 1q , . . . .

Therefore,
8
ď

j“m

Kj Ď Ki `
ε

3
Bn
po, 1q .

It follows that

Am “ cl

˜

8
ď

j“m

Kj

¸

Ď cl
´

Ki `
ε

3
Bn
po, 1q

¯

“ Ki `
ε

3
Bn
ro, 1s Ď Ki `

ε

2
Bn
po, 1q , (:)

for all i,m ě N‹ ` 1. As a consequence of Lemma 3.1.4, there exists N2 P N such that

A Ď Am `
ε

2
Bn
po, 1q , (;)

for any m ą N2. Let N̂ “ maxtN‹ ` 1, N2u. It follows from (;), (:) and Proposition 2.1.1

that

A Ď Am `
ε

2
Bn
po, 1q Ď Ki `

ε

2
Bn
po, 1q `

ε

2
Bn
po, 1q

35



then, by Properties 2.10.1 and Theorem 2.10.3,

“ Ki ` εB
n
po, 1q ,

for all i,m ě N̂ ` 1. Hence, δ pKi, Aq ă ε for any i ą N̂ ` 1.

�

A closed n-cube of En with centre a and side length 2R is defined by

tz P En | max t|z1 ´ a1| , |z2 ´ a2| , . . . , |zn ´ an|u ď Ru .

The proof of the well-known The Blaschke Selection Theorem is due to [35] and [51].

The Blaschke Selection Theorem. From each bounded sequence of convex bodies one can

select a subsequence converging to a convex body.

Proof of Blaschke Selection Theorem.

Let tKiuiPN be a bounded sequence whose elements belong to Kn. This means that there

exists a real number M ě 0 such that δ pK,K‹q ď M , for all K,K‹ P tKiuiPN. Each

Ki of the sequence tKiuiPN is non-empty, since each Ki P Kn. Therefore,
Ť8

i“1Ki ‰ H.

Let k P
Ť8

i“1Ki be arbitrarily chosen. Also, choose some Ki‹ P tKiuiPN arbitrarily. Since

Ki‹ P Kn, it follows that Ki‹ is compact and thus, bounded. So, there exists a real number

Mi‹ ě 0 such that }k1 ´ k2} ďMi‹ , for any k1,k2 P Ki‹ . Let

C “
 

z P En | max
 

|z1|, . . . , |zn|
(

ď 2M `Mi‹ ` }k}
(

.

Claim:
8
ď

i“1

Ki Ď C.

Let x P
Ť8

i“1Ki be arbitrarily chosen. Then, there exists i, j P N such that x P Ki and

k P Kj. It follows from the boundedness of tKiuiPN that Ki Ď Ki‹ ` MBn
po, 1q and

Kj Ď Ki‹ `MBn
po, 1q. Therefore, there exists k1,k2 P Ki‹ and b1,b2 P Bn

po, 1q such that

x “ k1 `Mb1 and k “ k2 `Mb2. Observe that

max
 

|x1| , . . . , |xn|
(

ď

d

n
ÿ

i“1

|xi|
2
“ }x}
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then, by the triange inequality,

ď }x´ k} ` }k}

“ }k1 `Mb1 ´ pk2 `Mb2q } ` }k}

then, by the triangle inequality,

ď }k1 ´ k2} `M p}b1} ` | ´ 1| ¨ }b2}q ` }k}

ďMi‹ ` 2M ` }k}.

This implies that x P C.

Note that C is a cube with edge length xM “ 2 ¨ p2M `Mi‹ ` }k}q. It follows from the

claim that the sequence tKiuiPN is contained in the cube C. Sub-divide each edge of C

into 2m equal parts to create 2mn closed sub-cubes of C each with edge length
xM

2m
, whose

union is equal to C; denote the collection of these sub-cubes by Cm “
 

Cmj

(

mjPI
where

I “ t1, . . . , 2mnu.

If K P tKiuiPN has non-empty intersection with a collection of sub-cubes
 

Cmj

(

mjPS

where S Ď t1, . . . , 2mnu from Cm, then
Ť

mjPS
Cmj

is said to be an |S|-minimal covering of

K.

For m “ 1, there are only finitely many possible minimal coverings for the elements of the

sequence tKiuiPN with the 2n sub-cubes of C1; namely, 22n ´ 1 possible minimal coverings.

By the Infinite Pigeonhole Principle (see [55]), there exists infinitely many elements of the

sequence tKiuiPN with the same minimal covering. Denote this subsequence of tKiuiPN whose

elements have the same minimal covering, by tK1iuiPN.

Similarly, the sequence tK1iuiPN contains an infinite subsequence tK2iuiPN whose elements

have the same minimal covering by sub-cubes of C2.

Continue in this way to obtain a sequence tKmi
uiPN whose elements have the same mini-

mal covering by sub-cubes of Cm and which is a subsequence of tKpiuiPN, for any fixed m P N

and for any integer p ď m.
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Claim: For any i, j P N and any fixed integers p ď m, δ
`

Kpi , Kmj

˘

ď
xM
?
n

2m
.

Denote the sub-cubes which minimally cover Kpi by
 

Cpq
(

qPS
where S Ď t1, . . . , 2pnu. Since

p ď m, the element Kmj
belongs to a subsequence of the sequence to which Kpi belongs and

therefore, is also minimally covered by the same sub-cubes of Cp which minimally cover Kpi .

It follows that

Kmj
Ď

ď

qPS

Cpq . (‹)

Let x P
Ť

qPS Cpq be arbitrarily chosen. There exists at least one sub-cube C‹ P
Ť

qPS Cpq

such that x P C‹. Since C‹ is part of the minimal covering of Kpi , Kpi XC
‹ ‰ H. Both Kpi

and C‹ are closed, so KpiXC
‹ is closed by Theorem 2.5.1. The set txu is closed and bounded

and thus, compact in En. It follows from Theorem 2.8.5 that there exists z P Kpi X C‹ so

that d px, Kpi X C
‹q “ }x´ z}. Observe that

}x´ z} “ d px, Kpi X C
‹
q “ inf t}x´ y} | y P Kpiu

ď max t}c1 ´ c2} | c1, c2 P C
‹
u “

xM
?
n

2p
.

Therefore,

x P Bn
´

z,
xM
?
n

2p

¯

“ z`
xM
?
n

2p
¨ Bn

po, 1q Ď Kpi `
xM
?
n

2p
¨ Bn

po, 1q .

It follows that
ď

qPS

Cpq Ď Kpi `
xM
?
n

2p
¨ Bn

po, 1q .

This together with ((‹)) implies that

Kmj
Ď Kpi `

xM
?
n

2p
¨ Bn

po, 1q .

A similar argument can be used to show that Kpi Ď Kmj
`

xM
?
n

2p
¨ Bn

po, 1q. Hence,

δ
`

Kpi , Kmj

˘

ď
xM
?
n

2p
for any i, j P N and any fixed integers p ď m.

It follows from the Claim that for any fixed integers p ď m,

δ
`

Kpp , Kmm

˘

ď
xM
?
n

2p
.
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Thus, for any ε ą 0, let N “
xM
?
n

ε
. Recall that

1

2p
ă

1

p
for all p P N. Then, whenever

m, p ą N ,

δ
`

Kpp , Kmm

˘

ď
xM
?
n

2p

ă
xM
?
n

p
ă

xM
?
n

N
“ ε.

Thus, tKmmumPN is a Cauchy sequence. By Theorem 3.1.5, tKmmumPN converges to an

element of Kn. �

The following Theorem describes how a convergent sequence of convex bodies can be

expressed as a convergent sequence of points. Its proof can be found on page 63 of [51].

Theorem 3.1.6. A sequence tKiuiPN of convex bodies converges to K a convex body if and

only if

(i) Each element in K is the limit point of a sequence tkiuiPN with ki P Ki.

(ii) The limit point of any convergent sequence tkijujPN with kij P Kij belongs to

K.

3.2 Mazur’s Finite Dimensional Density Theorem

A set S is dense in X if clpSq “ X. In contrast, a set is S called nowhere dense in X if

intpclpSqq “ H. The countable union of nowhere dense sets is a meagre set.

The elements from the boundary of a convex body K can be classified into two disjoint set

of points as follows. Let k P bdpKq be an arbitrarily chosen. It follows from Theorem 2.10.1.1

that there exists at least one hyperplane H through k, which supports K. If H is unique,

the boundary point k is said to be a smooth point. Otherwise, the boundary point k is called

a singular point.
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Let H be a supporting hyperplane of a convex body K at the point k1 P bdpKq. Then,

H “ tx P E3 | xx,uy “ xk1,uy , u P Sn´1u and the set

NK pk
1
q “

 

λu | xk, λuy ď xk1, λuy , @ k P K, λ P R, u P Sn´1
(

contains all outward normal vectors of each supporting hyperplane at the point k1 P K

together with the zero vector. If k1 is a smooth boundary point of K, then NK pk
1q is a ray

emanating from o and therefore, NK pk
1q is one-dimensional. If k1 is a singular boundary

point of K, then the dimension of NK pk
1q is at least two (see p. 70 of [26]). The set NK pk

1q

is called the normal cone of K at k1; the lemma below explains why the set is so named.

The proof of the lemma is due to [26].

Lemma 3.2.1. The set NK pk
1q is a closed, convex cone.

Proof. Let v1,v2 P NK pk
1q be arbitrarily chosen. Then,

xx,v1y ď xk
1,v1y and xx,v2y ď xk

1,v2y

for all x P K. For any arbitrarily chosen real numbers λ1, λ2 ě 0,

λ1 xx,v1y ď λ1 xk
1,v1y and λ2 xx,v2y ď λ2 xk

1,v2y

and thus,

λ1 xx,v1y ` λ2 xx,v2y ď λ1 xk
1,v1y ` λ2 xk

1,v2y

for all x P K. Use the properties of the inner product to get that

xx, λ1v1 ` λ2v2y ď xk
1, λ1v1 ` λ2v2y

for all x P K. This means that λ1v1 ` λ2v2 P NK pk
1q. It follows from Theorem 2.11.1 that

NK pk
1q is a convex cone.

Let tviuiPN be a convergent sequence whose elements belong to NK pk
1q; denote the point

to which the sequence converges by v P En. Let x P K be arbitrarily chosen. It follows that

xx,viy ď xk
1,viy
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for any i P N. Notice that

|xx,viy ´ xx,vy| “ |xx,vi ´ vy| ,

then, by the Cauchy Schwarz inequality,

ď }x}}vi ´ v}

and if x ‰ o, then

ă }x}
ε

}x}
“ ε

since vi Ñ v as iÑ 8. If x “ o, then xx,viy “ xx,vy for all i P N; this would mean that the

sequence of real numbers txx,viyuiPN is a constant sequence. In either case, the sequence of

real numbers txx,viyuiPN converges to the real number xx,vy. A nearly identical argument

can be used to show that the sequence of real numbers txk1,viyuiPN converges to the real

number xk1,vy. By Theorem 2.6.4,

xx,vy ď xk1,vy

for all x P K. This means that v P NK pk
1q. Hence, NK pk

1q is closed by Theorem 2.6.3. �

Mazur’s Finite Dimensional Density Theorem. Smooth points are dense in the bound-

ary of a convex body K Ď En.

The proof of Mazur’s finite dimensional density theorem, above, relies on the well-known

theorem below. Let tXiu be a countable collection of closed sets of the space pX , d̂q, which

each have empty interior. The space pX , d̂q is said to be a Baire space if
Ť

Xi also has empty

interior in pX , d̂q.

Baire Category Theorem. If pX , d̂q is a compact Hausdorff space or a complete metric

space, then pX , d̂q is a Baire space.

A proof of the Baire Category Theorem can be found on page 296 of [42]. A topological

space X is called a Hausdorff space if for each pair of distinct elements x1 and x2, there

exists disjoint open sets U1 and U2 in X, which contain x1 and x2, respectively.
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Lemma 3.2.2. A subset of a Hausdorff space equipped with the subspace topology is a Haus-

dorff space.

Proof. Let S be a subset of a Hausdorff space X and let s1 and s2 be arbitrarily chosen

distinct elements from S. Since X is Hausdorff there exists two disjoint open sets U1 and U2

such that s1 P U1 and s2 P U2. Then, s1 P U1 X S and s2 P U2 X S where U1 X S, U2 X S Ď

TS “ tS X U | U is open inXu, which implies that U1 X S and U2 X S are open in pS, TSq.

Moreover,

pU1 X Sq X pU2 X Sq “ pU1 X U2q X S “ HX S “ H.

Hence, pS, TSq is Hausdorff. �

The proof of the above lemma, used in the proof of Mazur’s Finite Dimensional Density

Theorem, is due to [41]. All metric spaces are Hausdorff spaces (see p. 129 of [42]). Therefore,

En is a Hausdorff space.

Theorem 3.2.3. Let S Ď En. Then, pS, TSq is compact if and only if it is closed and bounded

in the Euclidean metric.

A proof of the above theorem can be found on p. 173 of [42]. The overall structure of the

proof of Mazur’s Finite Dimensional Density Theorem is due to [26] and the proof of Claim

1 is due to [48].

Proof of Mazur’s Finite Dimensional Density Theorem.

Let K Ď En be an arbitrarily chosen convex body. First, it will be shown that bdpKq with

the subspace topology is a Baire space.

Since K is compact in En, it follows that K is closed and bounded. By Theorem 2.5.7 and

Theorem 2.5.1, K “ bdpKqY intpKq where bdpKqX intpKq “ H. This means that bdpKq Ď

K. This together with En being Hausdorff and Lemma 3.2.2 imply that
`

bdpKq, TbdpKq

˘

is

a Hausdorff space.
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By definition, bdpKq “ clpEnzKqXclpKq. In particular, this implies that bdpKq is closed

in En. Let k1,k2 P bdpKq be arbitrarily chosen. Since bdpKq Ď K, k1,k2 P K. Recall that

K is bounded in En. Therefore, there exists a real number M ě 0 such that }k1´k2} ďM .

Thus, bdpKq is bounded in En. By Theorem 3.2.3,
`

bdpKq, TbdpKq

˘

is compact.

It follows from Baire Category Theorem that
`

bdpKq, TbdpKq

˘

is a Baire space.

Now, it will be shown that the set of all singularities in bdpKq is meagre.

For all m P t1, 2, . . .u, let

Sm “

"

k P bdpKq | D u,v P NK pkq X Sn´1 such that |xu,vy| ď 1´
1

m

*

.

This means that for any x P Sm, there exists a distinct pair of outwards normal unit vec-

tors from the normal cone of K at x whose angle is at least arccos p1´ 1{mq and at most

arccos p1{m ´ 1q, since the inverse cosine function is monotonically decreasing. It is clear that

8
ď

m“1

Sm “ tk P bdpKq | k is a singular pointu .

Claim 1: Each Sm is closed in
`

bdpKq, TbdpKq

˘

, for all m P t1, 2, . . .u.

Let txiuiPN be a convergent sequence whose elements belong to Sm. Denote the point to

which txiuiPN converges by x. Since Sm Ď bdpKq and bdpKq is closed in En, x P bdpKq by

Theorem 2.6.3. For each element xi P Sm from the sequence txiuiPN, there exists ui,vi P

NK pxiq X S
n´1 such that

|xui,viy| ď 1´
1

m
.

This creates two sequences of unit vectors tuiuiPN and tviuiPN whose elements belong to

8
ď

i“1

`

NK pxiq X Sn´1
˘

“ Sn´1
X

˜

8
ď

i“1

NK pxiq

¸

Ď Sn´1.

Let s1, s2 P S
n´1 be arbitrarily chosen. It follows that }s1} “ }s2} “ 1. Use this together

with the triangle inequality to get that

}s1 ´ s2} ď }s1} ` } ´ s2} “ }s1} ` | ´ 1|}s2} “ 2.
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This means that Sn´1 is bounded. By Theorem 2.7.1, the sequences tuiuiPN and tviuiPN have

convergent subsequences; denote the convergent subsequences by tuijuijPN and tvijuijPN and

denote points to which they converge by u and v respectively. Note that Sn´1 is closed by

Theorem 2.5.1 and therefore, u,v P Sn´1 by Theorem 2.6.3.

Now, it will be shown that u,v P NK pxq. Let k P K be arbitrarily chosen. To see that

u P NK pxq, observe that

xu,k´ xy “
@

u´ uij ,k´ x
D

`
@

uij ,k´ x
D

ď |
@

u´ uij ,k´ x
D

| `
@

uij ,k´ x
D

“ |
@

u´ uij ,k´ x
D

| `
@

uij ,k´ xij
D

`
@

uij ,xij ´ x
D

ď |
@

u´ uij ,k´ x
D

| `
@

uij ,k´ xij
D

` |
@

uij ,xij ´ x
D

|,

then, by the Cauchy Schwarz inequality,

ď }u´ uij}}k´ x} `
@

uij ,k´ xij
D

` }uij}}xij ´ x},

then,
@

uij ,k
D

ď
@

uij ,xij
D

since uij P NK

`

xij
˘

X Sn´1 and thus,

ď }u´ uij}}k´ x} ` }uij}}xij ´ x},

then, since }uij} “ 1 because uij P NK

`

xij
˘

X Sn´1,

“ }u´ uij}}k´ x} ` }xij ´ x}. (‹)

If k “ x, then

p‹q “ }xij ´ x} ă ε,

since the sequence txiuiPN converges to x and therefore, the subsequence txijuijPN converges

to x by Theorem 2.6.1. Recall, from above, that the distance between any two elements of

K is less than or equal to some M P R. Suppose k ‰ x and M ě 1. Since uij Ñ u and

xij Ñ x as ij Ñ 8, there exists N1 P N such that for any ij ě N1,

}uij ´ u} ă
ε

2M
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and there exists N2 P N such that for any ij ě N2,

}xij ´ x} ă
ε

2M
.

Thus, for any ij ě N where N “ maxtN1, N2u,

p‹q ďM}uij ´ u} `M}xij ´ x} ăM ¨
ε

2M
`M ¨

ε

2M
“ ε.

Now, suppose that k ‰ x and M ă 1. Again, since uij Ñ u and xij Ñ x as ij Ñ 8, there

exists N 1
1 P N such that for any ij ě N 1

1,

}uij ´ u} ă
ε

2

and there exists N 1
2 P N such that for any ij ě N 1

2,

}xij ´ x} ă
ε

2
.

Thus, for any ij ě N 1 where N 1 “ maxtN 1
1, N

1
2u,

p‹q ă }uij ´ u} ` }xij ´ x} ă
ε

2
`
ε

2
“ ε.

As ε Ñ 0, xu,k´ xy ď 0. This means that xu,ky ď xu,xy for any k P K. Hence,

u P NK pxq. A nearly identical argument can be used to show that v P NK pxq. Thus,

u,v P NK pxq X S
n´1.

The following argument will show that |xu,vy| ď 1´
1

m
. First, notice that the sequence

of real numbers t
ˇ

ˇ

@

uij ,vij
Dˇ

ˇuijPN converges to the real number |xu,vy|. To see this, observe

that by the reverse triangle inequality

ˇ

ˇ

ˇ

ˇ

ˇ

@

uij ,vij
D
ˇ

ˇ´ |xu,vy|
ˇ

ˇ

ˇ
ď
ˇ

ˇ

@

uij ,vij
D

´ xu,vy
ˇ

ˇ

“
ˇ

ˇ

@

uij ,vij
D

`
@

uij ,´v
D

`
@

uij ,v
D

` x´u,vy
ˇ

ˇ

“
ˇ

ˇ

@

uij ,vij ´ v
D

`
@

uij ´ u,v
D
ˇ

ˇ ,

then, by the triangle inequality,

ď
ˇ

ˇ

@

uij ,vij ´ v
D
ˇ

ˇ`
ˇ

ˇ

@

uij ´ u,v
D
ˇ

ˇ ,
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then, by the Cauchy Schwarz inequality,

ď }uij}}vij ´ v} ` }uij ´ u}}v}

“ }vij ´ v} ` }uij ´ u} ă
ε

2
`
ε

2
“ ε

since uij Ñ u and vij Ñ v. Recall that |xui,viy| ď 1 ´
1

m
for each i P N and thus,

ˇ

ˇ

@

uij ,vij
D
ˇ

ˇ ď 1´
1

m
for each ij P N. Therefore, it follows from Theorem 2.6.4 that |xu,vy| ď

1´
1

m
.

Hence, x P Sm. In particular, this implies that Sm is closed in En by Theorem 2.6.3. It

follows from Theorem 2.5.2 that Sm is closed in
`

bdpKq, TbdpKq

˘

.

Claim 2: Each Sm is nowhere dense in
`

bdpKq, TbdpKq

˘

.

Suppose, for a contradiction, that Sm is not nowhere dense.

It follows that intbdpKq

`

clbdpKq pSmq
˘

‰ H. Recall from Claim 1 that Sm is closed in
`

bdpKq, TbdpKq

˘

and therefore, intbdpKq pSmq ‰ H. Let x P intbdpKq pSmq be arbitrarily

chosen. It follows that there exists an open set U in
`

bdpKq, TbdpKq

˘

such that x P U and

U Ď Sm. Note that

bdpUq X U “ bdbdpKq pUq X intbdpKq pUq “ H,

by Theorem 2.5.1 and Theorem 2.5.7.

Suppose U Ď conv pbdpUqq. This means that for any u P U , there exists u1,u2 P bdpUq and

0 ă λ ă 1 such that u “ λu1 ` p1´ λqu2.

Suppose U Ę conv pbdpUqq. This means that there exists z P U such that

z R conv pbdpUqq .

By Theorem 2.10.1.5, there exists a hyperplane, H, which properly separates tzu from

conv pbdpUqq. Suppose without loss of generality that z P H`. Note that K X H` is a

convex body. Let B be the maximum volume ball contained in the convex body K X H`.

It follows that B must touch the boundary of K XH` Ď U ; denote the point at which this
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occurs by b. Clearly, there is a unique supporting hyperplane of K at b P Sm, which is a

contradiction.

The set of all smooth points can be expressed as

bdpKqz
8
ď

m“1

Sm.

By Theorem 2.5.4 and Claim 2,

clbdpKq

˜

bdpKqz
8
ď

m“1

Sm

¸

“ bdpKqzintbdpKq

˜

8
ď

m“1

Sm

¸

“ bdpKqzH “ bdpKq.

Hence, bdpKqz
8
ď

m“1

Sm is dense in
`

bdpKq, TbdpKq

˘

.

�

3.3 The John - Löwner Theorem

An ellipsoid, E , in En with centre a is defined to be

E “ T pBn
ro, 1sq ` a

where Bn
ro, 1s “ tx P En | }x} ď 1u is the closed Euclidean unit ball, a P En is a vector and

T : En Ñ En is an invertible linear transformation.

Let A be an nˆn matrix. Denote the entry in the i-th row and j-th column of A by aij.

Recall that a matrix A is symmetric if aij “ aji, for all 1 ď i, j ď n. A symmetric matrix A

is positive definite if xx, Axy ą 0, for all vectors x ‰ o.

The proof of the result below follows from a comment on page 86 and Example 3 on page

81 of [28].

Proposition 3.3.1. Let A be an nˆn matrix and let σj “ pj1, j2, . . . , jnq denote one element

from the set of all n! permutations of the integers from 1 to n, which is labelled by Sn. The

permutation σj is said to be even if an even number of two element exchanges are required

when starting from the natural ordering p1, 2, . . . , i, i` 1, . . . , n´ 1, nq to get it into the form
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pj1, j2, . . . , jnq. Likewise, the permutation is said to be odd if an odd number of two element

exchanges are required. For example, the permutation p3, 2, 1q is odd since it is obtained from

exchanging the numbers 1 and 3 in the permutation p1, 2, 3q. If σj is even, then sign pσjq “ 1

and if σj is odd, then sign pσjq “ ´1. The determinant of A is denoted and defined by

detpAq “
ÿ

σjPSn

sign pσjq
n
ź

i“1

aiji .

The determinant map, which sends Enˆn to R, is a continuous function.

The properties of the determinant listed below are useful; their proofs can be found after

Theorem 2 on page 49 of [33], Theorem 2 on page 117 of [43] and Theorem 5 on page 113

of [43], respectively.

Properties 3.3.2. For any nˆ n matrices A and B,

(i) detpABq “ detpAq detpBq;

(ii) A is invertible if and only if detpAq ‰ 0;

(iii) If A is invertible, then det pA´1q “
1

detpAq
;

(iv) Let A and B be square matrices and let

C “

»

—

–

A X

0 B

fi

ffi

fl

be a block matrix where 0 represents a matrix whose entries are all zeros. Then,

detpCq “ detpAq detpBq.

Below, is a collection of properties of positive definite matrices; their proofs follow from

Theorem 1 on page 144, Theorem 3 on page 65 and Corollary 3 on page 51 of [33].

Properties 3.3.3. Let A be a symmetric positive definite nˆ n matrix. Then,

(i) Each eigenvalue λi of A is positive, for 1 ď i ď n. Also, if each eigenvalue of

some symmetric nˆ n matrix B is positive, then B is positive definite;

48



(ii) detpAq ą 0;

(iii) A is invertible.

The matrix resulting from interchanging the rows and columns of A and applying the

complex conjugate to each entry in the matrix A is called the conjugate transpose of A and

is denoted by A˚. It is stated on on page 131 of [56] that det pA˚q “ detpAq, where detpAq

denotes the complex conjugate of detpAq.

Proposition 3.3.4. Any ellipsoid E with centre a can be written as

E “ tx P En | xQpx´ aq,x´ ay ď 1u

for some positive definite matrix Q.

Proof. By definition E “ T pBn
ro, 1sq`a for some invertible linear transformation T : En Ñ

En and some vector a P En. This means

E “ T pBn
ro, 1sq ` a “ tT pxq ` a | x P Bn

ro, 1su

“ tT pxq ` a | xx,xy ď 1u

“ tx P En |
@

T´1
px´ aq , T´1

px´ aq
D

ď 1u

“ tx P En |
@

T ˚´1T´1
px´ aq ,x´ a

D

ď 1u

“ tx P En |
@

pTT ˚q´1
px´ aq ,x´ a

D

ď 1u

Let A P Rnˆn be the matrix representation of the linear transformation T . Since T is

invertible, A´1 P Rnˆn is the matrix representation of the transformation T´1 : En Ñ En.

Denote the matrix pAA˚q´1 by Q. First notice that Q is self-adjoint. Namely,

Q˚ “
`

pAA˚q´1
˘˚
“
`

A´1˚A´1
˘˚

“ A´1˚A´1

“ A˚´1A´1
“ pAA˚q´1

“ Q.
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For all z ‰ o,

xQz, zy “
@

pAA˚q´1z, z
D

“
@

A˚´1A´1z, z
D

“
@

A´1˚A´1z, z
D

“
@

A´1z, A´1z
D

“ }A´1z}2 ě 0.

In fact, xQz, zy “ }A´1z}2 ą 0 since A´1z ‰ o. This follows from A´1 being invertible.

Therefore, the matrix Q is positive definite and E “ tx P En | xQpx´ aq,x´ ay ď 1u. �

The n-dimensional volume of a set S Ď En is denoted as and defined by

vol pSq “

ż

S

. . .

ż

dx1 . . . dxn.

For a proof of following result, see Theorem 14.15 on page 520 of [20].

Theorem 3.3.5. Let S : En Ñ En be a linear transformation and let B be a bounded subset

of En. Then, vol pSpBqq “ |detpSq| vol pBq.

It follows from Proposition 3.3.4 and Properties 3.3.2 that

detpQq “
1

detpT q2
.

This together with the above theorem implies that the volume of any ellipsoid

E “ T pBn
ro, 1sq ` a

is

vol pEq “ |detpT q| vol pBn
ro, 1sq “

vol pBn
ro, 1sq

a

detpQq
.

Proofs of the next two facts can be found, respectively, after Lemma 1.2 and Lemma 1.3

on page 205 of [7].

Lemma 3.3.6. Any ellipsoid E can be written as S pBn
ro, 1sq ` a where a P En and S :

En Ñ En is a linear transformation which is induced by a positive definite matrix.
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Lemma 3.3.7. Let Q1 and Q2 be nˆ n positive definite matrices. Then,

det

ˆ

1

2
pQ1 `Q2q

˙

ě
a

det pQ1q det pQ2q.

Equality holds if and only if Q1 “ Q2.

A function T : En Ñ En is an orthogonal transformation if xT pxq , T pyqy “ xx,yy, for

all x,y P En. The set of non-zero vectors tx1,x2, . . . ,xmu in En is called an orthonormal set

if }xi} “ 1, for all 1 ď i ď m and xxi,xjy “ 0, for all i ‰ j. The following fact provides

a further characterization of orthogonal transformations; it is proved on pages 16 and 17

of [49].

Proposition 3.3.8. If T : En Ñ En is an orthogonal transformation, then T is linear and

tT pe1q, T pe2q, . . . , T penqu is an orthonormal basis of En, where e1, . . . en denote the standard

basis vectors of En.

The collection of properties of orthogonal transformations, below, rely on the previous

result. Their proofs can be found on page 17 of [49], page 161 of [38], page 119 of [43] and

page 328 of [43].

Corollary 3.3.9. Let T : En Ñ En be an orthogonal transformation induced by the matrix

P “

„

T pe1q T pe2q . . . T penq



. Note that P is called an orthogonal matrix. Then,

(i) }T pxq ´ T pyq} “ }x´ y}, for any x,y P En;

(ii) PP T “ In “ P TP implying that P´1 “ P T ;

(iii) either detpP q “ 1 or detpP q “ ´1;

(iv) the rows and columns of P are an orthonormal basis for En.

The following well-known theorem, describes how to find an orthogonal basis of a subspace

S Ď En from any basis of S; a proof of the Gram-Schmidt Orthogonalization Theorem can

be found on pages 51 and 52 of [47].
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Gram-Schmidt Orthogonalization Theorem. Let tx1,x2, . . . ,xmu be a basis of a sub-

space S Ď En. Then, the set containing the vectors

f1 “ x1

f2 “ x2 ´
xx2, f1y

}f1}
2

f1

...

fm “ xm ´
xxm, f1y

}f1}
2

f1 ´
xxm, f2y

}f2}
2

f2 ´ . . .´
xxm, fm´1y

}fm´1}
2

fm´1

is an orthogonal basis of S and the set of all linear combinations of tx1,x2, . . . ,xmu is equal

to the set of all linear combinations of tf1, f2, . . . , fmu.

The theorem below characterizes the bases of En; its proof can be found on pages 46 and

47 of [5].

Theorem 3.3.10. Any set of n linearly independent vectors in En is a basis of En.

Two nˆ n matrices A and B are called similar if there exists some invertible matrix P

such that B “ P´1AP . The lemma below describes some properties of similar matrices; its

proof can be found on page 229 of [43].

Lemma 3.3.11. If A and B are similar n ˆ n matrices, then A and B have the same

determinant and eigenvalues.

An nˆ n matrix A is said to be orthogonally diagonalizable if there exists an orthogonal

matrix P such that P TAP is a diagonal matrix. The following theorem characterizes which

matrices have this property; its proof can be found on pages 329, 380 and 381 of [43].

Principal Axes Theorem. Let Q be a symmetric nˆ n matrix and let

R “
 

x P En | xTQx
(

“ tx P En | xx, Qxyu

be a quadratic form in the variables x1, x2, . . . xn. Then, Q has an orthonormal set of eigen-

vectors x1, . . . ,xn such that the orthogonal matrix

P “

„

x1 x2 . . . xn


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orthogonally diagonalizes Q. The quadratic form in terms of the new variables y1, y2, . . . , yn

for y “ P T pxq is R “
 

y P En |
@

y, P TAP pyq
D(

“ ty P En | λ1y1 ` λ2y2 ` . . .` λnynu,

where λ1, . . . λn are the eigenvalues of Q repeated according to their multiplicities. Note that

the columns of P are called the principal axes of the quadratic form R.

The concept of length or norm of a vector developed in Chapter 2 can be extended to

matrices. The Frobenius norm is a map which sends a matrix A of Emˆn to the real number

}A}F “

g

f

f

e

m
ÿ

i“1

n
ÿ

j“1

|aij|
2.

Concatenate the columns of the matrix A “

»

—

—

—

—

—

—

—

–

a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

am1 am2 . . . amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Emˆn into a single vec-

tor A “

„

a11 a21 . . . am1 . . . a1n a2n . . . amn

T

P Emn. Notice that the Euclidean

norm of the vector A is equivalent to the Frobenius norm of the matrix A:

}A} “
a

xA,Ay “

g

f

f

e

n
ÿ

j“1

m
ÿ

i“1

paijq
2
“

g

f

f

e

m
ÿ

i“1

n
ÿ

j“1

|aij|
2
“ }A}F .

Proposition 3.3.12. Let A P Emˆn and x P En. Then,

}Ax} ď }A}F }x}

and

}A}F ď
a

min pm,nq ¨ max
}x}“1

}A pxq }.

The first property of the Frobenius norm in the above proposition is stated on page 280

of [40] and labelled as equation p5.2.5q; the second is stated on page 133 of [23] and labelled

as equation p3.238q.
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John - Löwner Theorem. There exists a unique ellipsoid E of maximal volume contained

in some convex body K Ď En. Furthermore,

E Ď K Ď n E .

Proof of the John - Löwner Theorem.

Let K be an arbitrarily chosen convex body. It follows from Lemma 3.3.6 that for each

ellipsoid Ê Ď K there exists some vector a P En and some linear transformation S : En Ñ En

which is induced by a positive definite matrix such that Ê “ S pBn
ro, 1sq ` a. Let X denote

the set of all pairs pS, aq.

First, it will be shown that there exists a maximal volume ellipsoid inscribed in K.

Claim: X is compact in En2`n.

Let pS1, a1q , pS2, a2q P X be arbitrarily chosen. Then, S1 pxq ` a1, S2 pxq ` a2 P K, for any

x P Bn
ro, 1s. Since K is compact and thus, bounded, there exists a real number M such

that }S1 pxq ` a1} ďM and }S2 pxq ` a2} ďM . For any x P Bn
ro, 1s,

} pS1 ´ S2q pxq ` pa1 ´ a2q } “ }S1 pxq ` a1 ´ pS2 pxq ` a2q }

then, by the triangle inequality and a property of the norm,

ď }S1 pxq ` a1} ` |´1| }S2 pxq ` a2}

ďM `M “ 2M. (‹)

Since linear transformations preserve the zero vector, it follows that

o P S1 pB
n
ro, 1sq , S2 pB

n
ro, 1sq .

Then, a1 “ o`a1 P S1 pB
n
ro, 1sq`a1 Ď K and a2 “ o`a2 P S2 pB

n
ro, 1sq`a2 Ď K. Thus,

}a1 ´ a2} ďM, (:)

since K is bounded. Notice that by Proposition 3.3.12,

}S1 ´ S2}F ď
?
n ¨ max

}x}“1
}pS1 ´ S2q pxq}
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then, by (‹),

ď
?
n ¨ 2M “ 2

?
nM, (;)

for all x P Bn
ro, 1s. Hence,

} pS1, a1q ´ pS2, a2q } “ } pS1 ´ S2, a1 ´ a2q }

“ } pS1 ´ S2,oq ` p o
ljhn

P En2`n

, a1 ´ a2q}

then, by the triangle inequality,

ď }pS1 ´ S2,oq} ` }po, a1 ´ a2q}

then, by (;) and (:)

, ď 2
?
nM `M “M

`

2
?
n` 1

˘

.

This means that X Ď En2`n is bounded.

Let tpSi, aiquiPN be a convergent sequence whose elements belong to X Ď En2`n; denote

the point to which the sequence converges by x P En2`n. Let X “

»

—

—

—

—

–

x1 xn`1 . . . xn2´n

...
. . .

xn x2n . . . xn2

fi

ffi

ffi

ffi

ffi

fl

and x̂ “

„

xn2`1 . . . xn2`n

T

. Consider the sequence taiuiPN. Suppose for a contradiction

that taiuiPN does not converge to x̂. This means that there exists ε ą 0 such that }ai´x̂} ą ε

for all i P N. However,

ε ą }pSi, aiq ´ x} “ }pSi ´X,oq ´ po, ai ´ x̂q}

then, by the reverse triangle inequality,

ě
ˇ

ˇ }pSi ´X,oq} ´ |po, ai ´ x̂q}
ˇ

ˇ

“
ˇ

ˇ}Si ´X}F ´ }ai ´ x}
ˇ

ˇ
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then, since }ai ´ x̂} ą ε and by a property of the Frobenius norm,

ą |0´ ε| “ ε,

for all i P N. This is a contradiction. Thus, the sequence taiuiPN must converge to x̂.

It follows that there exists some N P N such that

}Si ´X}F “ }pSi ´X,oq}

“ } pSi ´X,oq ` po, ai ´ x̂q ´ po, ai ´ x̂q }

then, by the triangle inequality and a property of the Euclidean norm,

ď }pSi ´X,oq ` po, ai ´ x̂q} ` |´1} }po, ai ´ x̂q}

“ } pSi, aiq ´ x} ` }ai ´ x̂}

ă
ε

2
`
ε

2
“ ε,

for all i ą N . Thus, the sequence of linear transformations of En with positive semi-definite

matrices tSiuiPN converges to X. Let z ‰ o be arbitrarily chosen from Bn
ro, 1s. Then, there

exists N 1 P N such that

|xz, Si pzqy ´ xz, X pzqy| “ |xz, pSi ´Xq pzqy|

then, by the Cauchy-Schwarz inequality,

ď }z} ¨ } pSi ´Xq pzq }

then, by Proposition 3.3.12,

ď }z}}Si ´X}F }z} “ }z}
2
}Si ´X}F

then, since tSiuiPN converges to X,

ă }z}2 ¨
ε

}z}2
“ ε,
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for all i ą N 1. This means that the sequence of real numbers txz, Si pzqyuiPN converges to

xz, X pzqy for any z ‰ o from Bn
ro, 1s. Since each Si is positive definite, it follows from

definition that each xz, Si pzqy ą 0 for any z ‰ o from Bn
ro, 1s. Therefore, xz, X pzqy ą 0

for any z ‰ o from Bn
ro, 1s,by Theorem 2.6.4. Thus, X is a positive definite matrix.

It follows from Lemma 3.3.6 that X pBn
ro, 1sq ` x̂ is an ellipse. However, it must be shown

that X pBn
ro, 1sq ` x̂ Ď K. Let z P X pBn

ro, 1sq ` x̂ be arbitrarily chosen. Then, there

exists b P X pBn
ro, 1sq such that z “ b ` ˆbfx. Since X is positive definite, detpXq ą 0.

Therefore, X is invertible. This means that X´1 pbq P Bn
ro, 1s. Let si “ Si pX

´1 pbqq for

all i P N. Notice that there exists some N2 P N such that

} psi ` aiq ´ pb´ x̂q } “ } psi ` bq ´ pai ´ x̂q }

then, by the triangle inequality,

ď }si ` b} ` }ai ´ x̂}

“ }Si
`

X´1
pbq

˘

´X
`

X´1
pbq

˘

} ` }ai ´ x̂}

“ } pSi ´Xq
`

X´1
pbq

˘

} ` }ai ´ x̂}

then, by Proposition 3.3.12,

ď }Si ´X}F }}X
´1
pbq } ` }ai ´ x̂}

then, since X´1 pbq P Bn
ro, 1s,

ď }Si ´X}F ` }ai ´ x̂}

ă
ε

2
`
ε

2
“ ε,

for all i ą N2. This means that the sequence of points tsi`aiuiPN whose elements belong to

K converges to z. Since K is compact, it is also closed. Therefore, z P K by Theorem 2.6.3.

Thus, X pBn
ro, 1sq ` x̂ Ď K. Hence, X is closed in En2`n.

It follows that X is compact in En2`n. It follows from Proposition 3.3.1 that the func-

tion f : X Ñ R with f
`

pS, aq
˘

“ detpSq is continuous. Therefore, by Extreme Value
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Theorem f : X Ñ R attains its maximum on X , say at pS 1, a1q. Hence, the ellipsoid

E “ detpS 1q pBn
ro, 1sq ` a1 has maximum volume among all ellipsoids inscribed in K.

Now, it will be shown that the largest volume ellipsoid inscribed in K is unique. Suppose

for a contradiction that this is not the case. In other words, suppose that the ellipsoids

E1 “ S1 pB
n
ro, 1sq ` a1 and E2 “ S2 pB

n
ro, 1sq ` a2 are distinct, maximal volume ellipsoids

contained in K. It follows that pS1, a1q , pS2, a2q P X .

Claim: X Ď En2`n is convex.

Let pS, aq , pS1, a1q P X and x P Bn
ro, 1s be arbitrarily chosen. It follows that S pxq ` a P K

and S 1 pxq ` a1 P K. Now, let 0 ď λ ď 1 be arbitrarily chosen. Then,

λ pS pxq ` aq ` p1´ λq pS 1 pxq ` a1q P K,

since K is convex. Hence, λ pS, aq ` p1´ λq pS1, a1q P X . This means that X is convex.

Let S “
1

2
pS1 ` S2q and a “

1

2
pa1 ` a2q. Since X is convex, pS, aq P X . It follows that

the ellipsoid S pBn
ro, 1sq ` a is contained in K; denote it by E 1. If S1 ‰ S2, it follows from

Lemma 3.3.7 that

vol pE 1q “ det pSq vol pBn
ro, 1sq ą vol pE1q “ vol pE2q .

This would contradict the assumption that the ellipsoids E1 and E2 have the largest volume

among all ellipsoids inscribed in K. Thus, S1 “ S2.

In order for E1 and E2 to still be distinct, a1 ‰ a2. Recall from the definition of an

ellipsoid that S1 is invertible. Recall from Lemma 2.4.6 that S´1
1 is a linear transformation.

To make this part of the proof more tractable, apply the linear transformation S´1
1 to K.

By (ii) of Properties 2.4.8, S´1
1 pKq is still convex. It follows from Lemma 2.9.1 and The-

orem 2.9.2 that S´1
1 pKq is still compact and S´1

1 pintpKqq is non-empty since intpKq ‰ H

and S´1
1 is a function. In summary, S´1

1 pKq is a convex body.

By Proposition 2.4.1, S´1
1 pE1q , S

´1
1 pE2q Ď S´1

1 pKq. Recall that for any ellipsoid E Ď K,

vol pEq ď vol pE1q “ vol pE2q . (z)
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It follows from Theorem 3.3.5 that

vol
`

S´1
1 pEq

˘

“
ˇ

ˇdetpS´1
1

ˇ

ˇ vol pEq

then, by (z) and the fact
ˇ

ˇdet
`

S´1
1

˘
ˇ

ˇ ą 0,

ď
ˇ

ˇdet
`

S´1
1

˘ˇ

ˇ vol pE1q “
ˇ

ˇdet
`

S´1
1

˘ˇ

ˇ vol pE2q

“ vol
`

S´1
1 pE1q

˘

“ vol
`

S´1
1 pE2q

˘

,

meaning that the ellipsoids S´1
1 pE1q and S´1

1 pE2q are the largest volume ellipsoids contained

in S´1
1 pKq. Moreover,

S´1
1 pE1q “ S´1

1

`

S1 pB
n
ro, 1sq ` a1

˘

“ Bn
ro, 1s ` S´1

1 pa1q

and likewise,

S´1
1 pE2q “ S´1

1

`

S1 pB
n
ro, 1sq ` a2

˘

“ Bn
ro, 1s ` S´1

1 pa2q .

By (vi) of Properties 2.3.1,
`

S´1
1

˘´1
“ S1 and therefore, S´1

1 is invertible. It follows from

Lemma 2.4.3 and Theorem 2.4.5 that S´1
1 is a bijection. Therefore, if S´1 pa1q “ S´1 pa2q,

then a1 “ a2, which is a contradiction. Thus, S´1
1 pa1q ‰ S´1

1 pa2q and hence, S´1
1 pE1q ‰

S´1
1 pE2q.

To simplify the notation, let K 1 “ S´1
1 pKq, E 11 “ S´1

1 pE1q, E 12 “ S´1
1 pE2q, a11 “ S´1

1 pa1q and

a12 “ S´1
1 pa2q. To summarize, E 11 and E 12 are distinct closed balls of radius 1 centred at the

points a11 and a12.

Notice that conv pE 11 Y E 12q Ď K 1. An ellipsoid E 1 will be defined so that E 1 Ď conv pE11 Y E 12q.

The line passing through the points a11 and a12 will be one of the principal axes of E 1. Since

this line may not be one of the standard axes, use the Principal Axis Theorem to change the

coordinate system so that E 1 is in standard position. First, notice that the vector a11 ´ a12,
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like any vector in En can be written as a linear combination of the standard basis vectors

of En: namely, a11 ´ a12 “ µ1e1 ` µ2e2 ` . . . ` µnen for some µ1, µ2, . . . , µn P R. Since

a11 ‰ a12, it follows that a11 ´ a12 ‰ 0. This means that at least one of the terms of the sum

µ1e1 ` µ2e2 ` . . . ` µnen has a non-zero coefficient; select one of these terms and denote it

by µiei, where 1 ď µi ď n. Notice that the set te1, . . . , ei´1, a
1
1 ´ a12, ei`1, . . . , enu is linearly

independent and spans En. Use the Gram-Schmidt orthogonalization method to turn the

set te1, . . . , ei´1, a
1
1 ´ a12, ei`1, . . . , enu into an orthogonal basis of En: Let

vi “ a11 ´ a12;

v1 “ e1 ´
xe1,viy

}vi}2
vi;

...

vi´1 “ ei´1 ´
xei´1,viy

}vi}2
vi;

vi`1 “ ei`1 ´
xei`1,viy

}vi}2
vi;

...

vn “ en ´
xen,viy

}vi}2
vi.

Normalize each of these vectors and denote this orthonormal basis of En by

tv11, . . . ,v
1
i, . . . ,v

1
nu .

By (iv) of Corollary 3.3.9, that the matrix P “

„

v11 . . . v1i . . . v1n



is an orthogonal

matrix. It follows from (iii) of Corollary 3.3.9 that detpP q “ ˘1 and therefore, P is invertible.

Finally, let

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

1 . . . 0 . . . 0

...
. . .

...

0 . . .
1

`

1
2
}a11 ´ a12} ` 1

˘2 . . . 0

...
...

. . .

0 . . . 0 . . . 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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and let

E 1 “
"

x P En
ˇ

ˇ

ˇ

ˇ

Bˆ

x´
1

2
pa11 ` a12q

˙

, A

ˆ

x´
1

2
pa11 ` a12q

˙F

ď 1

*

,

where x “ P pzq for some z P En.

Thus, E 1 Ď conv pE 11 Y E 12q and hence, E 1 Ď K 1.

Notice that

vol pE 1q “ vol pBn
ro, 1sq

ˆ

1`
1

2
}a2 ´ a1}

˙

.

Since a1 ‰ a2, it follows that 1`
1

2
}a2 ´ a2} ą 1. This means that

vol pE 1q ą vol pBn
ro, 1sq “ vol pE 11q “ vol pE 12q .

However, this contradicts that E 11 and E 12 are the largest volume ellipsoids in K 1. Thus,

a1 “ a2.

�
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Chapter 4

Illuminating Convex Bodies in E3 with Affine Plane

Symmetry

Let K be a convex body. The set of all boundary points of K is denoted by bdpKq. Fur-

thermore, the set of all interior points of K is denoted by intpKq. A direction d is said to

illuminate x P bdpKq if

rxd X intpKq ‰ H

where rxd “ tz P En | z “ x` λd, λ ě 0u is the closed ray emanating from x with direction

d. The directions d1,d2, . . . ,dn are said to illuminate K if each boundary point of K is

illuminated by at least one of these directions. The minimum number of directions required

to illuminate the entire boundary of K is called the illumination number of K.

In 1960, Boltyanski [15] and Hadwiger [27] independently published a conjecture, which

is equivalent to the following statement:

Every convex body K in En is illuminated by at most 2n directions.

This conjecture is, now, known as the Illumination Conjecture. Many partial results towards

a complete proof of the Illumination Conjecture have been obtained since 1960. For example,

Dekster [21] gave a rough but sound proof of the following theorem:

Theorem 4.1. If K Ă E3 is convex body symmetric about a plane, then K can be illuminated

by at most eight directions.

The proof of Theorem 4.1 follows the case structure outlined below.
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relbd(B) has no sides 
(§ 4.2.2 )

The point q is a 
ground point
(§ 4.2.2.1)

The point q is a 
cliff point
(§ 4.2.2.2)

By Mazur’s finite dimensional 
density theorem, there exists a 

smooth point p ∈ relbd(B). 
Since relbd(B) has no sides, 

A(p)={q}.

relbd(B) contains a side 
with midpoint p such 

that A(p)={q} 
(§ 4.2.3.1)

The point q is a 
ground point

The point q is a 
cliff point

For each side of 
relbd(B), there exists 

another side in relbd(B) 
that is parallel to it

There exists at least 
one side of relbd(B) 
that is degenerate

(§ 4.2.3.2)

Each side of relbd(B) 
is non-degenerate

There exists one 
side of relbd(B) 

whose length is less 
than 

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

(§ 4.2.4)

The sides of 
relbd(B) have 
length at least E is an ellipsoid E ✓ K ✓ 2E

Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

By the John-Löwner theorem, 
there exists a maximum volume 
ellipse, E is an ellipsoid E ✓ K ✓ 2E

Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

, such that E is an ellipsoid E ✓ B ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ B ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

. 
Apply a linear transformation to 
K so that E is an ellipsoid E ✓ K ✓ 2E

Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

 becomes a disc of 
radius 1 in the 

E is an ellipsoid E ✓ B ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4. x1x2-plane

1

E is an ellipsoid E ✓ B ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4. x1x2-plane

1

-plane.

B is not a polygon
(§ 4.2.5.1)

B is a polygon

B is a 
parallelogram

(§ 4.2.6) B is a 2n-gon, 
 

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

E is an ellipsoid E ✓ K ✓ 2E
Here is a nice fraction 1/2 and a nice inequality n � 4

1

(§ 4.2.7)

B is a 
hexagon
(§ 4.2.8)

Figure 4.1
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4.1 Preliminaries

A set S in E3 is affine plane symmetric about some plane H with respect to the line L if the

following two conditions are met:

(a) L meets H at exactly one point; and

(b) for any s P S, there exists a vector t P E3 and a point s1 P S such that

s, s1 P L` t and 1
2
ps` s1q P H X S.

Note that the line L and the plane H need not be orthogonal.

Figure 4.2: The parallelepiped is affine plane symmetric about the plane H with respect to

the line L but H and L are not orthogonal.

Let x1, x2 and x3 denote the axes in E3 and let e1, e2 and e3 denote the standard basis

vectors of E3.

Due to the fact that the illumination number of a convex body is invariant under rotation

and translation, all affine plane symmetric convex bodies K in E3 are hereinafter assumed,

without loss of generality, to be affine plane symmetric about the x1x2-plane with respect

to some line L. Projections onto the x1x2-plane are simpler when L is orthogonal to the

x1x2-plane. For convenience, apply the following transformation, T , to K; it will ensure that
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the line L is orthogonal to the x1x2-plane. Let

T pe1q “ e1

T pe2q “ e2

T puq “ e3,

where u is the unit vector with non-negative coordinates such that the line tλu | λ P Ru is

parallel to L. Notice that for any z P E3,

T pzq “

»

—

—

—

—

—

—

—

—

–

1 0 ´
xu, e1y

xu, e3y

0 1 ´
xu, e2y

xu, e3y

0 0
1

xu, e3y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

z.

It readily follows that the transformation T preserves vector addition and scalar multiplica-

tion. Thus, T is a linear transformation. The illumination number of a convex body is also

invariant under any linear transformation. Therefore, affine plane symmetric convex bodies

K in E3 are hereinafter assumed to be affine plane symmetric about the x1x2-plane with

respect to a line L, which is orthogonal to the x1x2-plane.

Let z “ pz1, z2, z3q be some arbitrary vector of E3. The map Pr : E3 Ñ E2ˆt0u, which is

called the orthogonal projection onto the x1x2-plane, sends z to the vector Prpzq “ pz1, z2, 0q

in E2 ˆ t0u. The orthogonal projection of any subset S of E3 onto the x1x2-plane is defined

to be

PrpSq “ txs, e1y e1 ` xs, e2y e2 | s P Su .

If S Ď En is a convex and affine plane symmetric set, then its orthogonal projection onto

the x1x2-plane is simply its intersection with the x1x2-plane, that is S X pE2 ˆ t0uq. In

particular, the projection of K onto the x1x2-plane is equivalent to K X pE2 ˆ t0uq and will

be referred to as the base set, B, of K. The base set, B, has the following properties:

Properties 4.1.1.
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(i) B is a convex body in the x1x2-plane;

(ii) relbdpBq Ď bdpKq;

(iii) relintpBq “ PrpintpKqq.

Proof. (i) Recall that all affine sets are convex and closed. Thus, the x1x2-plane,

E2 ˆ t0u, is closed and convex. Moreover, K is closed and convex. Thus,

B is closed and convex since it is the intersection of two closed, convex sets.

The base set B is a subset of K, which is bounded. Thus, B is bounded. It

follows that B is convex and compact. Since K is a convex body, it follows

that intpKq ‰ H. This implies that K ‰ H. Moreover, K is affine plane

symmetric about the x1x2-plane. It follows from the definition of affine plane

symmetry, given above, that a subset of K X pE2 ˆ t0uq “ B is non-empty.

Thus, B ‰ H. Now, it follows that relintpBq ‰ H (see Theorem 2.3.1 in [60]).

Furthermore, note that affpBq “ E2 ˆ t0u. In other words, B lies entirely in

E2 ˆ t0u. Hence, B is a convex body in the x1x2-plane.

(ii) Let x P relbdpBq be arbitrarily chosen. It follows, by definition, that

relbdpBq “ clpBqzrelintpBq

where the sets relbdpBq and relintpBq are disjoint. This means x P clpBq

and x R relintpBq. In (i), it was established that B is closed; therefore,

x P clpBq “ B Ď K. It follows from K being closed and Theorem 2.5.7 that

K “ intpKq Y bdpKq

where intpKqXbdpKq “ H. This means that either x P intpKq or x P bdpKq.

Suppose for a contradiction that x P intpKq. Then, there exists a real number

r ą 0 such that

B px, rq Ď K.
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It follows that

B px, rq X
`

E2
ˆ tou

˘

Ď K X
`

E2
ˆ tou

˘

“ B.

Notice that affpBq “ E2 ˆ tou. It follows, by definition, that x P relintpBq.

However, this is a contradiction. Therefore, x P bdpKq, which implies that

relbdpBq Ď bdpKq.

(iii) First, it will be shown that Pr pintpKqq Ď relintpBq. Let x P Pr pintpKqq be

arbitrarily chosen. Then, there exists some k P intpKq Ď K such that

x “ xk, e1y e1 ` xk, e2y e2.

Since K is affine plane symmetric about E2 ˆ tou, it follows that there exists

k1 P K such that k1 “ k`µe3 for some µ P R and 1
2
pk` k1q P B “ K X

`

E2ˆ

tou
˘

. Notice that

1

2
pk` k1q “

B

1

2
pk` k1q , e1

F

e1 `

B

1

2
pk` k1q , e2

F

e2

“

A

k`
µ

2
e3, e1

E

e1 `

A

k`
µ

2
e3, e2

E

e2

“ xk, e1y e1 ` xk, e2y e2 `

Aµ

2
e3, e1

E

e1 `

Aµ

2
e3, e2

E

e2

“ x.

Therefore, x P B. In (i), it was shown that B is closed. This means that

B “ relintpBq Y relbdpBq. Note that relintpBq X relbdpBq “ H since the

relative interior and relative boundary of any set is disjoint. In particular, this

means that either x P relintpBq or x P relbdpBq. Suppose for a contradiction

that x P relbdpBq. In (ii), it was shown that relbdpBq Ď bdpKq. Thus,

x P bdpKq. By Corollary 2.10.11,

rk,k1q Ď intpKq.

However, x “ 1
2
pk` k1q P rk,k1q Ď intpKq. This is a contradiction. Hence,

x P relintpBq, implying that Pr pintpKqq Ď relintpBq.
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Finally, it will be shown that relintpBq Ď PrpintpKqq. Let x P relintpBq be

arbitrarily chosen. Then, there exists some real number r ą 0 such that

B px, rq X
`

E2
ˆ tou

˘

Ď B.

Recall that K is a convex body, which implies intpKq ‰ H. This means that

there exists k P intpKq Ď K. Also, recall that K is affine plane symmetric

about E2 ˆ tou, meaning that there exists k1 P K such that k1 “ k ` µe3 for

some µ P R and 1
2
pk` k1q P B. Notice that

1

2
pk` k1q “

A

k`
µ

2
e3, e1

E

e1 `

A

k`
µ

2
e3, e2

E

e2

“ xk, e1y e1 ` xk, e2y e2 “ Pr pkq .

By Corollary 2.10.11, rk,k1q Ď intpKq. Thus, Pr pkq P intpKq. This means

that there exists a real number r1 ą 0 such that

B pPr pkq , r1q Ď K.

Let z P B

ˆ

Pr pkq `
r1

2
e3,

r1

2

˙

be arbitrarily chosen. Then, there exists some

real number 0 ď µ1 ď 1 and unit vector u such that

z “

ˆ

Pr pkq `
r1

2
e3

˙

` µ1 ¨
r1

2
u

“ k` r1
ˆ

}e3 ` µ
1u}

2

˙ˆ

e3 ` µ
1u

}e3 ` µ1u}

˙

.

The triangle inequality, properties of the Euclidean norm, the bounds of µ1,

and the fact that e3 and u are unit vectors together imply that

0 ď }e3 ` µ
1u} ď }e3} ` µ

1
}u} “ 1` µ1 ă 2.

It immediately follows that z P B pk, r1q. Therefore,

B

ˆ

Pr pkq `
r1

2
e3,

r1

2

˙

Ď B pk, r1q Ď K.
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This implies that Pr pkq `
r1

2
e3 P intpKq.

If Pr pkq “ x, then

B

Pr pkq `
r1

2
e3, e1

F

e1 `

B

Pr pkq `
r1

2
e3, e2

F

e2

“ xPr pkq , e1y e1 ` xPr pkq , e2y e2

“ Pr pkq “ x.

This means that x P PrpintpKqq, which implies that relbdpBq Ď PrpintpKqq.

For the remainder of the argument, suppose that Pr pkq ‰ x. The affine

combination of the vectors x,Pr pkq P E2 ˆ tou,

ˆ

1`
r

2
¨

1

}x´ Pr pkq }

˙

x`

ˆ

´
r

2
¨

1

}x´ Pr pkq }

˙

Pr pkq ,

can be re-written as

x`
r

2

ˆ

x´ Pr pkq

}x´ Pr pkq }

˙

P B px, rq X
`

E2
ˆ tou

˘

Ď B Ď K.

Corollary 2.10.11 implies that

„

Pr pkq `
r1

2
e3,x`

r

2

ˆ

x´ Pr pkq

}x´ Pr pkq }

˙˙

Ď intpKq.

Recall that the Euclidean norm is always non-negative. However,

}x´ Pr pkq } ą 0

since Pr pkq ‰ x. This implies that 2}x ´ Pr pkq } ą 0. Recall that r ą 0, so

r ` 2}x´ Pr pkq } ą 0. Notice that

0 ă 2}x´ Pr pkq } “ pr ` 2}x´ Pr pkq }q

ˆ

2}x´ Pr pkq }

r ` 2}x´ Pr pkq }

˙

.

Recall that a positive number can either be written as the product of two

positive numbers or two negative numbers. Therefore,

2}x´ Pr pkq }

r ` 2}x´ Pr pkq }
ą 0.
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Also, notice that

0 ă r “ pr ` 2}x´ Pr pkq }q

ˆ

r

r ` 2}x´ Pr pkq }

˙

“ pr ` 2}x´ Pr pkq }q

ˆ

1´
2}x´ Pr pkq }

r ` 2}x´ Pr pkq }

˙

.

It follows that

1´
2}x´ Pr pkq }

r ` 2}x´ Pr pkq }
ą 0,

which implies that

2}x´ Pr pkq }

r ` 2}x´ Pr pkq }
ă 1.

Observe that the point

2}x´ Pr pkq }

r ` 2}x´ Pr pkq }

ˆ

x`
r

2

ˆ

x´ Pr pkq

}x´ Pr pkq }

˙˙

`
r

r ` 2}x´ Pr pkq }

ˆ

Pr pkq `
r1

2
e3

˙

in the half-open segment

„

Pr pkq `
r1

2
e3,x`

r

2

ˆ

x´ Pr pkq

}x´ Pr pkq }

˙˙

is equivalent to

ˆ

2}x´ Pr pkq }

r ` 2}x´ Pr pkq }
`

r

r ` 2}x´ Pr pkq }

˙

x`

ˆ

´
r

r ` 2}x´ Pr pkq }
`

r

r ` 2}x´ Pr pkq }

˙

Pr pkq `
rr1

r ` 2}x´ Pr pkq }
e3

“ x`
rr1

r ` 2}x´ Pr pkq }
e3.

Therefore,

x`
rr1

r ` 2}x´ Pr pkq }
e3 P intpKq

and

B

x`
rr1

r ` 2}x´ Pr pkq }
e3, e1

F

e1 `

B

x`
rr1

r ` 2}x´ Pr pkq }
e3, e2

F

e2

“ xx, e1y e1 ` xx, e2y e2 “ x.

Thus, x P PrpintpKqq. Hence, relbdpBq Ď intpKq.

�

70



An immediate consequence of (iii) from Properties 4.1.1 is that relintpBq Ď intpKq.

Let z be any arbitrary vector in the x1x2-plane. The pre-image of the projection map

onto the x1x2-plane Pr´1 : E2 ˆ t0u Ñ E3 sends the vector z to the line t z` λe3 | λ P Ru.

The pre-image of any set S lying completely in the x1x2-plane is defined to be

Pr´1
pSq “ S ` tλe3 | λ P Ru

“ tz P E3
| xz, e1y e1 ` xz, e2y e2 “ Prpzq P Su.

Let a and b be vectors in E3. The closed line segment between these two vectors is

denoted by ra,bs “ tz P E3 | z “ a ` λpb ´ aq, 0 ď λ ď 1u. The open line segment

is denoted by pa,bq “ tz P E3 | z “ a ` λpb ´ aq, 0 ă λ ă 1u. Finally, the half-open,

or half-closed, line segments between these two vectors is denoted by either ra,bq “ tz P

E3 | z “ a ` λpb ´ aq, 0 ď λ ă 1u or pa,bs. The length of all the above line segments

is defined as }a ´ b} “ }b ´ a}. If the vectors a and b lie on some planar curve C,

then ra,bsC , pa,bqC , ra,bqC , pa,bsC respectively denote closed, open and half-open, or half-

closed, arcs of the curve C with positive orientation. Specifically, the reader will encounter

the notation ra,bsB, pa,bqB, ra,bqB, pa,bsB, by which the closed, open, half-open and half-

closed arcs of the relative boundary of B, relbdpBq, with positive orientation are respectively

meant.

The closed halfspace H`̀̀ “ tz P E3 | xz, e3y ě 0u represents the region on and above the

x1x2-plane. Likewise, the closed halfspace H´́́ “ tz P E3 | xz, e3y ď 0u represents the region

on and below the x1x2-plane.

With the foregoing definitions in place, it is now possible give the following definitions,

which will be used extensively in the proof of Theorem 4.1. For any subset X of the base

set B of K,

X`̀̀ “ Pr´1
pXq X bdpKq XH`̀̀ and X´́́ “ Pr´1

pXq X bdpKq XH´́́.

The wall of K, which we denote by W , is Pr´1
prelbdpBqq X bdpKq.
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Proposition 4.1.2. The three sets W , relintpBq`̀̀ and relintpBq´́́ are pairwise disjoint and

bdpKq “ W Y relintpBq`̀̀ Y relintpBq´́́.

Proof. First, it will be shown that W , relintpBq`̀̀ and relintpBq´́́ are pairwise disjoint.

Suppose for a contradiction that the sets relintpBq`̀̀ and relintpBq´́́ are not disjoint.

This means that there exists an element x P E3 such that x P relintpBq`̀̀ X relintpBq´́́. It

follows that x P H`̀̀ XH´́́ X bdpKq and Pr pxq P relintpBq. Notice that

H`̀̀ XH´́́ “
 

z P E3
| xz, e3y ě 0

(

X
 

z P E3
| xz, e3y ď 0

(

“
 

z P E3
| xz, e3y “ 0

(

“ E2
ˆ tou .

Since x P E2 ˆ tou, it follows that x “ Pr pxq. Therefore, x P relintpBq Ď intpKq and

x P bdpKq. However, it follows Theorem 2.5.7 that intpKq X bdpKq “ H, which is a

contradiction. Hence, relintpBq`̀̀ X relintpBq´́́ “ H.

Suppose for a contradiction that the sets W and relintpBq`̀̀ are not disjoint. This means

that there exists an element x P E3 such that x P W X relintpBq`̀̀. It follows that Pr pxq P

relbdpBq and Pr pxq P relintpBq. However, by definition, the relative boundary and relative

interior of any set are disjoint, which is a contradiction. Hence, W X relintpBq`̀̀ “ H.

A very similar argument can be used to show that W X relintpBq´́́ “ H.

To show that bdpKq “ W Y relintpBq`̀̀ Y relintpBq´́́, first show that W Y relintpBq`̀̀ Y

relintpBq´́́ Ď bdpKq and then show that bdpKq Ď W Y relintpBq`̀̀ Y relintpBq´́́.

Suppose that x P W Y relintpBq`̀̀ Y relintpBq´́́. Notice that W “ Pr´1
prelbdpBqq X

bdpKq Ď bdpKq and relintpBq`̀̀ “ Pr´1
prelintpBqq X bdpKq X H`̀̀ Ď bdpKq. Likewise,

relintpBq´́́ Ď bdpKq. It follows that x P bdpKq. Thus, WY relintpBq`̀̀Y relintpBq´́́ Ď bdpKq.

Suppose that x P bdpKq Ď K. Since K is affine plane symmetric, Prpxq P PrpKq “ B.

Recall from Properties 4.1.1 i that B is closed. It follows that B “ relbdpBq Y relintpBq,

where the sets relbdpBq and relintpBq are disjoint. Then, either Prpxq P relbdpBq or

Prpxq P relintpBq.

Case 1: Suppose Prpxq P relbdpBq.
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It follows, by definition, that x P Pr´1
prelbdpBqq. Also, recall that x P bdpKq, by supposi-

tion. This means x P W . Therefore, x P W Y relintpBq`̀̀ Y relintpBq´́́.

Case 2: Suppose Prpxq P relintpBq.

It follows, by definition, that x P Pr´1
prelintpBqq. Again, x P bdpKq, by supposition. Note

that x P H`̀̀ or x P H´́́. It follows that if x P H`̀̀, then x P relintpBq`̀̀ and if x P H´́́, then

x P relintpBq´́́. Thus, x P W Y relintpBq`̀̀ Y relintpBq´́́.

Together Case 1 and Case 2 imply that bdpKq Ď W Y relintpBq`̀̀ Y relintpBq´́́. �

For any subset Y of relbdpBq, the wall through Y , which we denote by WY , is Pr´1
pY qX

bdpKq. A vector x P relbdpBq is called a ground point if Pr´1
pxq X bdpKq “ txu. If a

vector x P relbdpBq is not a ground point, it is said to be a cliff point. In other words,

x P relbdpBq is a cliff point if Pr´1
pxq X bdpKq is some non-degenerate line segment. Often,

this non-degenerate line segment will be referred to as the cliff at x and will be denoted by

rx´,x`s.

The point x P relbdpBq is a ground point. Each side

of B is degenerate.

The point x P relbdpBq is a cliff point. All points

on the relative boundary of B are cliff points

Figure 4.3

Let S be some convex set and let H be some supporting hyperplane of S. The set H XS

is called an exposed face of S. Any exposed 1-dimensional face of B in E2 ˆ t0u is called a

side of B. Informally, a side is a non-degenerate closed segment in relbdpBq, which is not a
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part of another such segment.

Proposition 4.1.3. Let Y Ď relbdpBq be a closed line segment. Then WY is a compact,

convex set which is symmetric about Y .

Proof. First, it will be shown that WY is symmetric about Y .

Let x P WY be arbitrarily chosen. Recall that WY “ Pr´1
pY q X bdpKq. It follows that

x P Pr´1
pY q. By definition, Pr pxq P Y . Also, notice that WY Ď K. This means that

x P K. Since K is affine plane symmetric about the x1x2-plane, there exists x1 P K such

that x1 “ x` µe3, for some µ P R and

1

2
px` x1q P B. (4.1)

Substitute x1 “ x` µe3 into (4.1) to get that

1

2
px` x1q “ x`

µ

2
e3. (4.2)

It follows from the fact that
1

2
px` x1q P E2 ˆ tou that

1

2
px` x1q “

B

1

2
px` x1q , e1

F

e1 `

B

1

2
px` x1q , e2

F

e2

and by (4.2)

“

A

x`
µ

2
e3, e1

E

e1 `

A

x`
µ

2
e3, e2

E

e2

“ xx, e1y e1 ` xx, e2y e2 `
µ

2
xe3, e1y e1 `

µ

2
xe3, e2y e2

“ xx, e1y e1 ` xx, e2y e2 “ Pr pxq .

Therefore, 1
2
px` x1q P Y .

Since K is closed, it follows from Theorem 2.5.7 that K “ bdpKq Y intpKq where the

sets bdpKq and intpKq are disjoint. This means that either x1 P bdpKq or x1 P intpKq.

Suppose for a contradiction that x1 P intpKq. Then, it follows from Theorem 2.10.10 that

rx1,xq Ď intpKq. However, 1
2
px` x1q P rx1,xq and it was shown above that 1

2
px` x1q P Y Ď

relbdpBq Ď bdpKq, which is a contradiction. Thus, x1 P bdpKq. Note that for some µ P R

x1 “ x` µe3
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“ x`
µ

2
e3 `

µ

2
e3

“ Pr pxq `
µ

2
e3 P Y ` tλe3 | λ P Ru “ Pr´1

pY q .

Hence, x1 P Pr´1
pY q X bdpKq “ WY . Therefore, it has been shown that WY is symmetric

about the closed line segment Y .

Second, it will be shown that WY is compact.

Recall that Pr´1
pY q “ Y ` tλe3 | λ P Ru. Lines are affine, so it follows from (vi) of Theo-

rem 2.5.1 that tλe3 | λ P Ru is closed.

The closed line segment Y is closed in E3. Let y1,y2 P Y Ď relbdpBq Ď B Ď K be arbitrarily

chosen. Recall that K is a convex body, which implies that K is bounded. It follows that

there exists M P R such that }y1 ´ y2} ăM . Therefore, Y is bounded.

It follows by Theorem 2.8.4 that Y ` tλe3 | λ P Ru “ Pr´1
pY q is closed.

By definition, bdpKq “ clpKq X clpEnzKq. Recall that the closure of any set is closed. It

follows by (ii) from Theorem 2.5.1 that bdpKq is closed.

Apply (ii) from Theorem 2.5.1 again to get that WY “ Pr´1
pY q X bdpKq is closed.

Let w1,w2 P WY be arbitrarily chosen. It follows that w1,w2 P bdpKq Ď K. It follows that

}w1 ´w2} ăM . This means that WY is bounded.

Hence, WY is compact.

Finally, it will be shown that WY is convex.

Let x, z P WY and 0 ď µ ď 1 be arbitrarily chosen. It follows that Pr pxq ,Pr pzq P Y .

Recall that line segments are convex; therefore, Y is convex. This means that µPr pxq `

p1´ µqPr pzq P Y .Since WY is symmetric about Y , there exist µ̃, µ̂ P R such that

Pr pxq “ x` µ̃e3 and Pr pzq “ z` µ̂e3.

Then,

µx` p1´ µq z “ µ
`

Pr pxq ´ µ̃e3

˘

` p1´ µq
`

Pr pzq ´ µ̂e3

“ µPr pxq ` p1´ µqPr pzq ` p´µ´ µ̃e3 ´ µµ̂e3q e3
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P Y ` tλe3 | λ P Ru “ Pr´1
pY q .

Since K is convex and x, z P WY Ď bdpKq Ď K,it follows that µx ` p1´ µq z P K. Again,

recall that K “ intpKq Y bdpKq where the sets intpKq and bdpKq are disjoint. It follows

that either µx` p1´ µq z P intpKq or µx` p1´ µq z P bdpKq.

Suppose for a contradiction that µx` p1´ µq z P intpKq.

Since µx ` p1´ µq z P Pr´1
pY q, it follows that Pr pµx` p1´ µq zq P Y . Recall that Y Ď

relbdpBq Ď bdpKq. Also, recall that K is affine plane symmetric. In particular, this means

that there exists w P K such that

1

2
pw ` µx` p1´ µq zq “ Pr pµx` p1´ µq zq .

It follows from Corollary 2.10.11 that

rµx` p1´ µq z,wq Ď intpKq.

Together, these imply that Pr pµx` p1´ µq zqq P rµx` p1´ µq z,wq Ď intpKq. But, this is

a contradiction because Pr pµx` p1´ µq zq P bdpKq. Therefore, µx` p1´ µq z P bdpKq.

Hence, µx` p1´ µq z P WY , which implies that WY is convex. �

Given an arbitrary set S, a hyperplane H is said to support S at the point s if the set S

is completely contained in one of the closed halfspaces determined by the hyperplane H and

if s P HX clpSq. Let x P relbdpBq and let ` be a supporting line of B at x in the x1x2-plane.

Each element belonging to `1 X relbdpBq is called an antipode of x where `1 is a supporting

line of B, which is parallel to and distinct from `. The complete antipode of x, which we

denote by Apxq, is the set of all antipodes of x.
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Figure 4.4

4.2 Proof of Theorem 4.1

4.2.1 Initial Observations

The following two results are useful in proving Theorem 4.1. In particular, Lemma 4.2.1.2

is required in sections 4.2.4, 4.2.7.3 and 4.2.8.3. The proof of Lemma 4.2.1.2 relies, in part,

on Lemma 4.2.1.1. Moreover, Lemma 4.2.1.1 will be needed in 4.2.8.3.

Lemma 4.2.1.1. Let k P relbdpBq be a cliff point with cliff rk´,k`s. Suppose that pd P E3

is a direction with the property that Prppdq illuminates k and
A

pd, e3

E

ă 0. Let p1 P E3 such

that rk
`

pd
X
`

E2 ˆ t0u
˘

“ tp1u. Let p2 P E3 be chosen such that k is the midpoint of the line

segment rp1,p2s. Namely, p2 “ p1 ` 2pk´ p1q. Note that by convexity p2 R B.
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Figure 4.5

Also, note that the two supporting lines of B through p2 may support B at more than

one point. Let the supporting line ` and c P `X relbdpBq be chosen such that the orientation

of convtk,p2, cu is positive and }c ´ p2} “ inft}r ´ p2} | r P ` X relbdpBqu. Then, every

x P rk, cqB is illuminated by pd.

Proof. By assumption, rk
Prppdq

X intpKq ‰ H. So, let w P rk
Prppdq

X intpKq. In other words,

w “ k` λPrppdq P intpKq for some λ ą 0.

It is useful to note that since rk
`

pd
X
`

E2
ˆ t0u

˘

“ tp1u,

p1 “ Prpp1q “ Prpk` ` ϕpdq “ k` ϕPrppdq (4.3)

for some ϕ ą 0. Also, xk`, e3y “ ´ϕ
A

pd, e3

E

, which implies xk´, e3y “ ϕ
A

pd, e3

E

. Observe

that by re-arranging (4.3), Prppdq “
1

ϕ
pp1 ´ kq “

1

ϕ
pk´ p2q.

It is also useful to note that pd “ σpp1´k`q for some σ ą 0. Furthermore, p1´k` “ k´´p2

since convtk`,p1,k
´,p2u is a parallelogram.
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Figure 4.6: The diagonals bisect each other, therefore convtk`,p1,k
´,p2u is a parallelogram.

Suppose x “ k.

Since k´ P rk´,k`s Ď bdpKq Ď K, Lemma 1.1.8 in [51] implies that pk´,ws P intpKq .

Claim: The ray rk
pd

intersects the line segment pk´,wq. In other words, µk´ ` p1´ µqw P rk
pd

for some 0 ă µ ă 1.

Figure 4.7
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Let µ “
λ

λ` ϕ
. Since λ, ϕ ą 0, it follows that µ ą 0. Furthermore, λ`ϕ ą λ. Therefore, it

also follows that µ ă 1. Consider the following,

µk´ ` p1´ µqw “ µk´ ` p1´ µqpk` λPrppdqq

“ k` λp1´ µqPrppdq ` µpk´ ´ kq

“ k` λp1´ µqPrppdq ` µ
@

k´, e3

D

e3

“ k` λp1´ µqPrppdq ` µϕ
A

pd, e3

E

e3

“ k` λ

ˆ

ϕ

λ` ϕ

˙

Prppdq `

ˆ

λϕ

λ` ϕ

˙

A

pd, e3

E

e3

“ k` ϕ

ˆ

λ

λ` ϕ

˙

pd.

Hence, µk´ ` p1´ µqw P pk´,wq X rk
pd
. In other words, µk´ ` p1´ µqw P intpKq X rk

pd
.

Thus, pd illuminates k.

Let x P pk, cqB be arbitrarily chosen.

Case 1: Suppose that rk, csB is a side of B. In other words, suppose that rk, csB “ rk, cs.

This means x P pk, cq.

Claim: convtk´,k`, cu Ď bdpKq.

Note that k “ 1
2
k´ ` 1

2
k` ` 0 c, which means k P convtk´,k`, cu. Thus,

rk, cs Ď convtk´,k`, cu.

Note that by Proposition 4.1.3, Wrk,cs is a compact convex set in the plane Pr´1
prk, csq. Also,

notice that k´,k`, c P Wrk,cs. These two facts together imply that convtk´,k`, cu Ď Wrk,cs.

By definition, Wrk,cs Ď bdpKq. Hence, convtk´,k`, cu Ď bdpKq.

Note that x “ η1k ` p1 ´ ηqc for some 0 ă η1 ă 1. Let f “ η1k` ` p1 ´ η1qc and e “

η1k´ ` p1´ η1qc. As defined, x “ 1
2
f ` 1

2
e.
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Figure 4.8

Recall from above that w “ k ` λPrppdq P intpkq for some λ ą 0. Applying Lemma 1.1.8

in [51] again, results in rw, cq Ď intpKq. Observe that

η1w ` p1´ η1qc “ η1pk` λPrppdqq ` p1´ η1qc

“ η1k` p1´ η1qc` η1λPrppdq

“ x` η1λPrppdq.

where η1λ ą 0. This implies that η1w`p1´ η1qc P rw, cqX rx
Prppdq

. In other words, η1w`p1´

η1qc P intpKq X rx
Prppdq

. Using Lemma 1.1.8 in [51] yet again, results in pe, η1w ` p1´ η1qcs P

intpKq. The same method used in the first part of the proof will be used now to show

rx
pd
X pe, η1w ` p1´ η1qcs ‰ H.
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Figure 4.9

Recall that xk´, e3y “ ϕ
A

pd, e3

E

for some ϕ ą 0. Note that }k´ ´ k} ă }e´ x} or in other

words, pe ´ fq “ γ1pk´ ´ kq where 0 ă γ1 ă 1. Let ξ1 “
η1λ

γ1ϕ` η1λ
. Since η1λ ą 0 and

γ1ϕ ą 0, ξ1 ą 0. Furthermore, γ1ϕ` η1λ ą η1λ, which implies ξ1 ă 1. Consider the following,

ξ1e´ p1´ ξ1qrη1w ` p1´ η1qcs “ ξ1e` p1´ ξ1qrx` η1λPrppdqs

“ x` ξ1pe´ xq ` p1´ ξ1qη1λPrppdq

“ x` ξ1γ1pk´ ´ kq ` p1´ ξ1qη1λPrppdq

“ x` ξ1γ1
@

k´, e3

D

e3 ` p1´ ξ
1
qη1λPrppdq

“ x` ξ1γ1ϕ
A

pd, e3

E

e3 ` p1´ ξ
1
qη1λPrppdq

“ x`
η1λ

γ1ϕ` η1λ
pd

Hence, ξ1e´p1´ξ1qrη1w`p1´η1qcs P rxpdXpe, η1w`p1´η1qcs. This means that rxpdXintpKq ‰

H. Thus, pd illuminates x.

Case 2: Suppose that rk, csB is not a side of B. Namely, suppose that rk, csB ‰ rk, cs.

Note that x P convtk,p2, cu. This means that there exists 0 ă σ ă 1 and 0 ă σ1 ă 1 ´ σ

such that x “ σk` σ1c` p1´ σ ´ σ1qp2.
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Figure 4.10

Claim: rx
Prppdq

X pk, cq ‰ H.

Notice that p1´ σ ´ σ1q ¨ ϕ ą 0. Now, observe that

x` rp1´ σ ´ σ1q ¨ ϕsPrppdq “ σk` σ1c` p1´ σ ´ σ1qp2 ` rp1´ σ ´ σ
1
q ¨ ϕsPrppdq

“ σk` σ1c` p1´ σ ´ σ1qp2 ` p1´ σ ´ σ
1
q pk´ p2q

“ σk` σ1c` p1´ σ ´ σ1qk

“ p1´ σ1qk` σ1c.

Since 0 ă σ1 ă 1´ σ ă 1, p1´ σ1qk` σ1c P rx
Prppdq

X pk, cq.

Let f “ p1´ σ1qk` ` σ1c and e “ p1´ σ1qk´ ` σ1c. As defined, p1´ σ1qk` σ1c “ 1
2
f ` 1

2
e.

Claim: pe, fq Ď intpKq.

First, it will be shown that p1´ σ1qk` σ1c P intpKq.

The supposition that ra,bs is not a side of B means that ra,bs Ę relbdpBq. Since a,b P

relbdpBq by assumption, it follows that pa,bq Ę relbdpBq. Since B is convex, the line

segment ra,bs is contained in B. This implies that pa,bq Ď relintpBq due to the fact that

B “ relbdpBqYrelintpBq where relbdpBqXrelintpBq “ H. Thus, p1´σ1qa´σ1b P relintpBq Ď

intpKq.

Since a´, a`,b P bdpKq Ď K and K is convex, it follows that ra´,bs Ď K and ra`,bs Ď K.
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Thus, e “ p1 ´ σ1qa´ ` σ1b P K and f “ p1 ´ σ1qa` ` σ1b P K. By Lemma 1.1.8 in [51],

pf , p1´ σ1qa` σ1bs Ď intpKq and rp1´ σ1qa` σ1b, eq Ď intpKq. Hence, pf , p1´ σ1qa` σ1bs Y

rp1´ σ1qa` σ1b, eq “ pf , eq “ pe, fq Ď intpKq.

Since 1´ σ ´ σ1 ą 0,

x` p1´ σ ´ σ1qpd “ σk` σ1c` p1´ σ ´ σ1qp2 ` p1´ σ ´ σ
1
qpk´ ´ p2q

“ σk` σ1c` p1´ σ ´ σ1qk´

“

ˆ

σ

1´ σ1

˙

rp1´ σ1qk` σ1cs `

ˆ

1´ σ ´ σ1

1´ σ1

˙

rp1´ σ1qk´ ` σ1cs

“

ˆ

σ

1´ σ1

˙

rp1´ σ1qk` σ1cs `

ˆ

1´
σ

1´ σ1

˙

rp1´ σ1qk´ ` σ1cs

P rx
pd
X pp1´ σ1qk` σ1c, eq.

Hence, pd illuminates x. �

Lemma 4.2.1.2. Let ru,vs Ď relbdpBq be a side and suppose that relintpBq contains a

segment rn,ms such that m´n “ 2pv´uq. Then Wru,vs can be illuminated by two directions.

Proof. Let m and n denote the endpoints of the line segment completely contained in

relintpBq which is twice as long and parallel to the side ru,vs Ď relbdpBq where the points

u,v,m and n follow each other in this order when starting at the point u and travelling

counter-clockwise.

Suppose Wru,vs “ ru,vs.

Claim: The directions d1 “
1
2
pn`mq ´ u and d2 “

1
2
pn`mq ´ v illuminate the entire

line segment ru,vs.

Let z P ru,vs be arbitrarily chosen.If z P ru, 1
2
pu` vqs, then z “ µ

`

1
2
pu` vq

˘

` p1 ´ µqu

for some 0 ď µ ď 1. Clearly,

z` d1 “
µ

2
pu` vq ` p1´ µqu`

1

2
pn`mq ´ u P rzd1

.

Moreover,

z` d1 “
µ

2
pu` vq ` p1´ µqu`

1

2
pn`mq ´ u
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“
µ

2
pv ´ uq `

1

2
pn`mq

“
µ

4
pm´ nq `

1

2
pn`mq

“

ˆ

1

2
´
µ

4

˙

n`

ˆ

1

2
`
µ

4

˙

m.

Since 0 ď µ ď 1, it follows that 0 ă 1
2
`

µ
4
ă 1. Thus,

ˆ

1

2
´
µ

4

˙

n`

ˆ

1

2
`
µ

4

˙

m P rn,ms Ď intB Ď intpKq.

In other words, rzd1
X intpKq ‰ H. So, d1 illuminates z.

Similarly, if z P r1
2
pu` vq ,vs, then z “ µ

`

1
2
pu` vq

˘

` p1´ µqv for some 0 ď µ ď 1 and

ˆ

1

2
`
µ

4

˙

n`

ˆ

1

2
´
µ

4

˙

m “ ´
µ

4
pm´ nq `

1

2
pn`mq

“ ´
µ

2
pv ´ uq `

1

2
pn`mq ` p1´ 1qv

“
µ

2
pu` vq ` p1´ µqv `

1

2
pn`mq ´ v P rzd1

X intpKq.

So, d2 illuminates z.

Suppose now that Wru,vs ‰ ru,vs.This means that ru,vs contains cliff points. Let k P

ru,vs be a cliff point chosen so that

}k` ´ k´} “ maxt}f` ´ f´} | for all cliff points f P ru,vsu.

Let p1 P rn,ms be chosen such that p1 ´ n “ 2pk´ uq and m´ p1 “ 2pv ´ kq.

Claim: The directions d` “ pp1´kq´pk`´kq and d´ “ pp1´kq´pk´´kq illuminate

Wru,vs.

Suppose that u and v are cliff points. This means that all points in the interval ru,vs are

cliff points, by convexity. Let w P
`

Wru,vs

˘

`̀̀
be arbitrarily chosen. Clearly, }w ´ Prpwq} ď

}k` ´ k}. Equivalently, pk` ´ kq “ pk ´ k´q “ ϕpw ´ Prpwqq for some ϕ ě 1. Also, note

that Prpwq “ γ1u` p1´ γ1qv for some 0 ď γ1 ď 1.

Let λ “
1

ϕ
. Since ϕ ě 1, it follows that 0 ă λ ď 1. If w P

`

Wru,vs

˘

`̀̀
, then

w ` λpd`q “ w ` λrpp1 ´ kq ´ pk` ´ kqs
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“ w ` λ

„

p1 ´
1

2
pp1 ´ nq ´ u´ ϕpw ´ Prpwqq



“ Prpwq ´ λu`
λ

2
pp1 ` nq

“ p1´ λqPrpwq ` λPrpwq ´ λu`
λ

2
pp1 ` nq

“ p1´ λqPrpwq ` λpγ1up1´ γ1qv ´ uq `
λ

2
pp1 ` nq

“ p1´ λqPrpwq ` λp1´ γ1qpv ´ uq `
λ

2
pp1 ` nq

“ p1´ λqPrpwq `
λp1´ γ1q

2
pm´ nq `

λ

2
pp1 ` nq

“ p1´ λqPrpwq `
λ

2
pp1 ` γ

1n` p1´ γ1qmq

“ p1´ λqPrpwq `
λ

2
pγ1p1 ` γ

1n` p1´ γ1qp1 ` p1´ γ
1
qmq

“ p1´ λqPrpwq ` λ

ˆ

γ1

2
pp1 ` nq `

p1´ γ1q

2
pp1 `mq

˙

P rwd` X intpKq.

Namely, it has been shown that the direction d` illuminates w.

If w P
`

Wru,vs

˘

´́́
, the exact same procedure shows that w is illuminated by the direction d´.

Now, suppose that either u or v is a ground point. Without loss of generality, let u be

a ground point. Also, let p2 “ p1 ` 2pk´ p1q.

Sub-claim: The points p2, u and n are collinear.

Consider the line through the points p2 and n, λp2 ` p1 ´ λqn. When λ “ 1
2
, the result is

k´ 1
2
pp1 ´ nq “ u, which shows p2, u and n are collinear.

Note that since u P relbdpBq and n P relintpBq, p2 R B by convexity. Let ` be a supporting

line of B passing through the point p2 such that u P rk, cqB where c P ` X relbdpBq and

}c´p2} “ inft||s´p2} | s P `XrelbdpBqu. Such a c P relbdpBq exists since rn,ms P relintpBq.

Notice that convtk,p2, cu has positive orientation. Furthermore, Prpd`q “ p1´k illuminates

k since k` Prpd`q “ k` pp1 ´ kq “ p1 P r
d`

k X intpKq. Thus, d` illuminates u by Lemma

4.2.1.1. �

4.2.2 First Major Case of Theorem 4.1

In this case, suppose that relbdpBq has no sides.
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Note that by Theorem 2.2.4 in [51], there are only countably many singular points in the

boundary of K and since relbdpBq Ď bdpKq, there are only countably many singular points

in relbdpBq. In other words, smooth points are dense in bdpKq and relbdpBq.

Let p P relbdpBq be an arbitrarily chosen smooth point. By definition, the supporting

line of B in the x1x2-plane at p is unique. Denote this supporting line by `. Since B is a

convex body in the x1x2-plane, it follows from Theorem 6 in [19] that there exists exactly one

other distinct supporting line of B in the x1x2-plane, parallel to `. Call this supporting line

`1. Since B has no sides, it follows that the supporting line `1 supports B at a single point,

q. Thus, the complete antipode of p contains only a single point. Namely, Appq “ tqu.

Either the point q is a ground point or it is a cliff point. In examining these two

possibilities, the first major case of Theorem 4.1 will be split into the sub-cases 4.2.2.1 and

4.2.2.2.

4.2.2.1 Suppose that q is a ground point.

A summary of the proof for this sub-case is described here with an explanation of how each

Proposition and Lemma fit together to make the proof. First, it is shown that q is illuminated

by the direction p´q. The proof of Proposition 4.2.2.1.1 does not make use of the fact that

relbdpBq has no sides and therefore, can be used again in Proposition 4.2.3.1. Second, an

open set on the boundary of K containing q is found and it is shown in Proposition 4.2.2.1.2

that every element of this open set is also illuminated by the direction p´ q. The open set

on the boundary of K containing q is denoted by U pqq. Lemma Lemma 4.2.2.1.3 shows that

there exists a closed set slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

X bdpKq, for some line `˚ strictly between

and parallel to the supporting lines ` and `1, that is contained by U pqq. Then, Propositions

4.2.2.1.8 and 4.2.2.1.9 show that there exist two points, a and b, of relbdpBq that belong

to U pqq and that lie on the line `˚. Finally, Lemma Lemma 4.2.2.1.12 shows that the

remaining part of the boundary, bdpKqzUpqq, is illuminated by the six directions 1
2
pq` aq´

b, 1
2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3.
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Note that Lemma Lemma 4.2.2.1.12 never makes use of the fact that relbdpBq has no sides

and therefore, will be used in all other cases with the points p and q carefully chosen.

Proposition 4.2.2.1.1. The point q is illuminated by the direction p´ q.

Proof. Recall from above that q P `1. It follows from the fact that the line `1 is parallel to

but distinct from the line ` that there exists some t ‰ o such that `1 “ ` ` t. Since B is

convex, rp,qs Ď B. Suppose for a contradiction that rp,qs Ď relbdpBq. It follows from

Theorem 14 in [39] that there exists a supporting line of B which contains the closed interval

rp,qs. Since p is a smooth point, the support line ` is unique. This means rp,qs Ď `.

Therefore, q P `. This is a contradiction. Hence, pp,qq Ę relbdpBq, since p,q P relbdpBq.

Recall from Properties 4.1.1 that B is closed and its relative interior is non-empty in the

x1x2-plane. It follows that B “ relintpBq Y relbdpBq. Also, recall that the relative interior

and the relative boundary of any set are disjoint. Thus, pp,qq Ď relintpBq Ď intpKq. So,

1
2
pp` qq “ q` 1

2
pp´ qq P rqp´q X intpKq. �

Proposition 4.2.2.1.2. There exists an open neighbourhood of the ground point q on the

boundary of K that is illuminated by the direction p´q. Denote this open neighbourhood by

Upqq.

Proof. First, the set Upqq will be explicitly defined. In Proposition 4.2.2.1.1, it was shown

that 1
2
pp` qq P intpKq. It follows from definition that there exists a real number χ ą 0

such that Bp1
2
pp` qq , χq Ď K. This open ball around 1

2
pp` qq will be used to generate an

open 1-cylinder, which we will denote by C. Let C “ B
`

1
2
pp` qq , χ

˘

` tλpq´ pq | λ P Ru,

where the set tλpq´ pq | λ P Ru is the line passing through the origin and lying parallel to

the vector q´ p. Now, let Upqq “ C X B pq, χq X bdpKq.

Next, it will be verified that Upqq contains q and that Upqq is open on the bdpKq.

Begin by observing that the set C XB pq, χq X bdpKq can be simplified to B pq, χq X bdpKq.

This follows from the fact that C X B pq, χq “ B pq, χq, which follows from the fact that

Bpq, χq Ď C. To see that Bpq, χq Ď C, start by letting x P Bpq, χq be arbitrary. This means
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that there exists a unit vector u and a scalar 0 ď η ă 1 such that x “ q` ηχu. The vector

x can be re-written as 1
2
pp` qq` ηχu` 1

2
pq´ pq where 1

2
pp` qq` ηχu P B

`

1
2
pp` qq , χ

˘

and 1
2
pq´ pq P tλpq´ pq | λ P Ru. Therefore, x P C.

It is now straightforward to check that Upqq contains q. It follows from definition that

q P Bpq, χq. From the way q was defined, q P relbdpBq and relbdpBq Ď bdpKq.

It follows from Theorem 1.7.1 in [60] that the open ball Bpq, χq is open in E3. Equipping

bdpKq with the subspace topology TbdpKq “ tV X bdpKq | V is open in E3u, it can be seen

that the set Upqq “ Bpq, χq X bdpKq P TbdpKq and therefore, is open in bdpKq.

Finally, it will be verified that Upqq is illuminated by the direction p´ q.

Let y P Upqq be arbitrarily chosen. Then, there exists a unit vector v and a scalar 0 ď µ ă 1

such that y “ q ` µχv. The element y ` 1
2
pp´ qq of the ray ryp´q can be re-written as

1
2
pp` qq ` µχv. Note that 1

2
pp` qq ` µχv P B

`

1
2
pp` qq , χ

˘

since 0 ď µ ă 1. It follows

that y ` 1
2
pp´ qq P ryp´q X intpKq. �

Note that for any line `: in the x1x2-plane, the set Pr´1
`

`:
˘

is a plane in E3. The set
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

is called the outer parallel domain of W`1XrelbdpBq at distance χ1 ą 0

and represents the the open neighbourhood on the bdpKq containing W`1XrelbdpBq that can

be illuminated by the same direction or directions as W`1XrelbdpBq. In this particular case,

`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq “ Upqq

and it was verified in Proposition 4.2.2.1.2 that Upqq is an open neighbourhood on bdpKq

that can be illuminated by the direction p´ q. The following lemma is proved in a general

way, not using any of the assumptions particular to this case, so that can be used in all

future cases; namely, the lemma holds for 0 ď dim
´

aff
`

Pr´1
p`1q XK

˘

¯

ď 2.

Lemma 4.2.2.1.3. There exists a line `˚ strictly between and parallel to ` and `1 in the

x1x2-plane such that

slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

X bdpKq Ď
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq.
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Proof. Since q P relbdpBq Ď B “ clpBq, it follows from Theorem 2.6.3 that there exists a

sequence of points in B converging to q. Denote this sequence by tsnunPN. For each element

sn of the sequence tsnunPN, let `n be the line passing through the vector sn P B which is

parallel to the lines ` and `1; this creates a sequence of parallel lines which is denoted by

t`nunPN. For each line `n from the sequence t`nunPN, take the pre-image of the projection map

onto the x1x2-plane of `n; this creates a sequence of hyperplanes tPr´1
p`nqunPN. Intersect

the convex body K with each hyperplane Pr´1
p`nq from the sequence tPr´1

p`nqunPN; this

produces the sequence tPr´1
p`nq XKunPN.

Using the Blaschke Selection Theorem, it will be shown that

δ
`

Pr´1
p`nq XK,Pr´1

p`1q XK
˘

Ñ 0

as n Ñ 8. In order to be able to apply the Blaschke Selection Theorem later, one must

verify that the set Pr´1
p`1q XK and every element of the sequence tPr´1

p`nq XKunPN are

compact, convex and non-empty sets.

Hyperplanes are affine and thus, convex. Of course, recall that K is also convex. These

facts combined with Theorem 2.10.2 imply that Pr´1
p`1q X K and every element of the

sequence tPr´1
p`nq XKunPN are convex.

By Theorem 2.5.1, hyperplanes are closed. Thus, Pr´1
p`1q and every element of the sequence

tPr´1
p`nqunPN are closed. Recall that K Ă En is compact. Thus, K is closed. This together

with (ii) of Theorem 2.5.1 means that Pr´1
p`1q X K and every element of the sequence

tPr´1
p`nq X KunPN are closed. Moreover, K contains Pr´1p`1q X K and every element of

the sequence tPr´1
p`nq X KunPN. Hence, Pr´1

p`1q X K and every element of the sequence

tPr´1
p`nq XKunPN are compact by Theorem 2.8.2.

By definition, it follows that for each element Pr´1
p`nqXK of the sequence tPr´1

p`nqXKunPN,

sn P Pr´1
p`nq XK with sn P tsnunPN where tsnunPN is the sequence of points belonging to B

that converge to q. This means each element of the sequence tPr´1
p`nqXKunPN is non-empty.

Also, tqu P Pr´1
p`1q XK and therefore, Pr´1

p`1q XK ‰ H.

90



Sub-Lemma 4.2.2.1.4. δ
`

Pr´1
p`nq XK,Pr´1

p`1q XK
˘

Ñ 0 as nÑ 8.

Proof. By the The Blaschke Selection Theorem, there exists a subsequence, denoted by

tPr´1
p`ni

q X KuiPN, of the sequence tPr´1
p`nq X KunPN that converges to Pr´1

p`1q X K.

Specifically,

δ
`

Pr´1
p`ni

q XK,Pr´1
p`1q XK

˘

Ñ 0 as iÑ 8. (4.4)

This means, by Theorem 3.1.6, that

(i) each point in Pr´1
p`1q X K is the limit of a sequence thni

uiPN with hni
P

Pr´1
p`ni

q XK, and

(ii) the limit of any convergent sequence thnij
ujPN with hnij

P Pr´1
p`nij

q X K

belongs to Pr´1
p`1q XK.

Let h P Pr´1
p`1q XK be arbitrarily chosen. It follows from (i) above that there exists a

sequence thni
uiPN with hni

P Pr´1
p`ni

q XK that converges to h.

A sequence, which contains the subsequence thni
uiPN, will be created as follows.

If n1 ą 1, then add the points hm to the sequence thni
unPN so that the indices of this new

sequence form a strictly increasing sequence of positive integers and which satisfy thmu “

rp,hn1q X
`

Pr´1
p`mq XK

˘

with Pr´1
p`mq XK P tPr´1

p`nq XKunPN, for all 1 ď m ă n1.

For all ni ă m ă ni`1, add the points hm to the sequence thni
unPN so that the indices of

this new sequence form a strictly increasing sequence of positive integers, where thmu “

phni
,hni`1

q X
`

Pr´1
p`mq XK

˘

with Pr´1
p`mq XK P tPr´1

p`nq XKunPN.

From each element Pr´1
p`mq XK of tPr´1

p`nq XKunPN there is a corresponding element

of this new sequence: either hm comes from the subsequence thni
uiPN, if there exists i P N

such that m “ ni; or hm “ p1 ´ κqp ` κhn1 for some 0 ď κ ă 1, if 1 ď m ă n1; or

hm “ p1 ´ κqhni
` κhnk

for some 0 ă κ ă 1, if ni ă m ă nk, given that nk is the

smallest positive integer satisfying ni ă m ă nk such that there exists at least one element

hm P phni
,hnk

q from Pr´1
p`mqXK, which belongs to tPr´1

p`nqXKunPN but does not belong

to tPr´1
p`ni

q XKuiPN. Therefore, the new sequence may be denoted by thnunPN.
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Due the fact that thni
uiPN converges to h, it follows that for all ε1 ą 0 there exists a real

number N 1 such that for all ni ą N 1,

}hni
´ h} ă

ε1

1` 2κ
, (4.5)

where 0 ă κ ă 1 is chosen such that hm “ p1 ´ κqhni
` κhnk

, given that nk is the

smallest positive integer satisfying ni ă m ă nk such that there exists at least one element

hm P phni
,hnk

q from Pr´1
p`mqXK, which belongs to tPr´1

p`nqXKunPN but does not belong

to tPr´1
p`ni

q XKuiPN. Observe that

}hm ´ h} “ }hni
´ h` hm ´ hni

}

ď }hni
´ h} ` }hm ´ hni

}

ď }hni
´ h} ` κ}hnk

´ hni
}

ď }hni
´ h} ` κ p}h´ hni

} ` }hnk
´ h}q

ă
ε1

1` 2κ
`

2κε1

1` 2κ
“ ε1.

This implies that the sequence thnunPN converges to h. Hence, each point in Pr´1
p`1q XK is

the limit of a sequence thnunPN with hn P Pr´1
p`nq XK.

Let thnmumPN be an arbitrarily chosen convergent sequence with hnm P Pr´1
p`nmq XK.

Suppose for a contradiction that thnmumPN converges to h1 R Pr´1
p`1q XK.

A new sequence, which contains the subsequence thnij
ujPN with hnij

P Pr´1
p`nij

q X K,

will be created as follows.

For all nm ă ni ă nm`1, add the points hni
to the sequence thnmumPN so that the indices of

the new sequence form a strictly increasing sequence of positive integers, where

thni
u “ phnm ,hnm`1q X

`

Pr´1
p`ni

q XK
˘

and Pr´1
p`ni

q XK is a member of the convergent subsequence tPr´1
p`ni

q XKuiPN.

Due to the supposition that thnmumPN converges to h1 R Pr´1
p`1q XK, it follows that for

all ε ą 0, there exists a real number rN such that for all nm ą rN ,

}hnm ´ h1} ă
ε

1` 2κ
,
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where 0 ă κ ă 1 is chosen such that hni
“ p1 ´ κqhnm ´ κhnk

, given that nk is the

smallest positive integer satisfying nm ă ni ă nk such that there exists at least one element

hni
P phnm ,hnk

q from Pr´1
p`ni

q XK. Observe that

}hni
´ h1} “ }hnm ´ h1 ` hni

´ hnm}

ď }hnm ´ h1} ` }hni
´ hnm}

“ }hnm ´ h1} ` κ}hnk
´ hnm}

ď }hnm ´ h1} ` κ p}hnk
´ h1} ` }h1 ´ hnmq

ă
ε

1` 2κ
`

2κε
1` 2κ

“ ε.

This implies that the newly created sequence converges to h1. The newly created sequence

contains the subsequence thnij
ujPN with hnij

P Pr´1
p`nij

q X K. This coupled with Theo-

rem 2.6.1 implies that thnij
ujPN converges to h1 R Pr´1

p`1q X K. However, this contradicts

(ii). Hence, the limit of any convergent sequence thnmumPN with hnm P Pr´1
p`nmqXK belongs

to Pr´1
p`1q XK.

Therefore, it follows from Theorem 3.1.6 that δ
`

Pr´1
p`nq XK,Pr´1

p`1q XK
˘

Ñ 0 as

nÑ 8. �

Sub-Lemma 4.2.2.1.5. The closed convex curve Pr´1
p`nq X bdpKq coincides with the set

relbd
`

Pr´1
p`nq XK

˘

in the plane Pr´1
p`nq.

Proof. Let x P relbd
`

Pr´1
p`nq XK

˘

be arbitrarily chosen. By definition,

relbd
`

Pr´1
p`nq XK

˘

“ cl
`

Pr´1
p`nq XK

˘

zrelint
`

Pr´1
p`nq XK

˘

.

Then,

x P cl
`

Pr´1
p`nq XK

˘

and x R relint
`

Pr´1
p`nq XK

˘

. (4.6)

Recall from above that each Pr´1
p`nq X K is compact, convex and non-empty. It follows

from Theorem 2.5.1 and Pr´1
p`nq XK being closed that x P Pr´1

p`nq XK. Therefore,

x P Pr´1
p`nq and x P K. (4.7)
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It follows from K being closed and Theorem 2.5.7 that K “ intpKqYbdpKq where intpKqX

bdpKq “ H. This means that either x P intpKq or x P bdpKq. Suppose for a contradiction

that x P intpKq. Then there exists a real number r ą 0 such that Bpx, rq Ď K. It follows

that

Bpx, rq X Pr´1
p`nq Ď K X Pr´1

p`nq.

This means that x P relint
`

Pr´1
p`nq XK

˘

, which is a contradiction. Therefore, x P bdpKq.

This together with 4.7 implies that x P Pr´1
p`nq X bdpKq. �

Sub-Lemma 4.2.2.1.6. Any arbitrary sequence of vectors trnunPN from trelbdpPr´1
p`nq X

KqunPN converges to q as nÑ 8.

Proof. Since relbdpPr´1
p`nq XKq Ď Pr´1

p`nq XK, it follows that

}rn ´ q} ď δpPr´1
p`nq XK,Pr´1

p`1q XKq “ maxt}yn ´ q} | yn P Pr´1
p`nq XKu ă ε.

�

Sub-Lemma 4.2.2.1.7. There exists an N P R such that n ě N implies relbdpPr´1
p`nq X

Kq Ď Upqq.

Proof. Since Upqq is an open neighbourhood around q in bdpKq, it follows that

relbdpUpqqq Ę Upqq.

Thus,

d
`

relbdpUpqqq,q
˘

“ inf t}u´ q} | u P relbdpUpqqqu ą 0.

Furthermore, relbdpUpqqq Ď bdpKq. To see this, first observe that bdpKq is closed since

it can be written as the intersection of two closed sets by definition. Also, clpUpqqq is the

intersection of all closed sets containing the set Upqq. Thus, clpUpqqq Ď bdpKq. Finally,

note that relbdpUpqqq Ď clpUpqqq, since clpUpqqq “ relintpUpqqq Y relbdpUpqqq.

By Claim 4, there exists an N P R such that n ě N implies }rn´q} ă dprelbdpUpqqq,qq, for

any rn P relbdpPr´1
p`nqXKq. This means that relbdpPr´1

p`nqXKq Ď Upqq, for n ě N . �
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In other words, Pr´1
p`nq X bdpKq Ď Upqq, for n ě N . It follows directly that

slab
“

Pr´1
p`N q,Pr´1

p`1q
‰

X bdpKq Ď Upqq, for n ě N .

Let `˚ “ `N . The line `˚ lies in the x1x2-plane strictly between and parallel to ` and `1

such that slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

X bdpKq Ď Upqq. �

Proposition 4.2.2.1.8. The line `˚ intersects relbdpBq at exactly two points.

Proof. Recall that the line `1 is parallel to but distinct from the line `. This means there

exists a vector t ‰ o such that `1 “ ` ` t. Due to the fact that `˚ is parallel to and lies

strictly between ` and `1, there exists 0 ă γ ă 1 such that `˚ “ `1 ´ γt “ p1 ´ γq`1 ` γ`.

Recall that p P ` X B and q P `1 X B. Thus, γp ` p1´ γqq P `˚ X pp,qq. Moreover,

recall that pp,qq Ď relintpBq. For the sake of simplicity, denote γp` p1´ γqq by y. Thus,

y P `˚ X relintpBq.

Note that the line `˚ can be written as the union of two rays emanating from y P `˚XrelintpBq

with opposite directions. By 2.32 in Appendix 1 of [3], each of these rays emanating from

y will intersect the relative boundary of B at exactly one point. Thus, `˚ will intersect the

relative boundary of B at two distinct points. �

One of the points of the set `˚XrelbdpBq lies in pp,qqB, denote it by a, and the other lies

in pq,pqB, denote it by b. In particular, this means that while travelling counter-clockwise

on the simple closed curve relbdpBq from the starting point p, the points a, q, b follow each

other in this order, before one returns to p.

Proposition 4.2.2.1.9. The open line segment pa,bq is contained by `˚ X relintpBq.

Proof. Recall that `˚ can be written as the union of two rays emanating from y P `˚ X

relintpBq. Note that the half-open line segment pa,ys belongs to one of these two rays and

ry,bq belongs to the other. It follows from Theorem 2.10.10 that pa,ys, ry,bq Ď relintpBq.

Therefore, pa,bq “ pa,ys Y ry,bq Ď relintpBq. �
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As a consequence of Proposition 4.2.2.1.9, there exists a real number 0 ă ξ ă 1 such that

y “ ξa` p1´ ξqb.

Let Bp and Bq denote the compact parts of B separated by the line segment ra,bs such

that p P Bp, q P Bq, Bp X Bq “ ra,bs and Bp Y Bq “ B. More formally, Bq “ B X

slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

and Bp “ B X slab
“

Pr´1
p`q,Pr´1

p`˚q
‰

. Note that BqX relbdpBq “

ra,bsB and Bp X relbdpBq “ rb, asB.

Furthermore, let Ba and Bb denote the compact subsets of B separated by the line

segment rp,qs such that a P Ba, b P Bb, Ba X Bb “ rp,qs and Ba Y Bb “ B. Specifically,

Ba “ B X tp1´ Γqp` Γq` λ pa´ bq | 0 ď Γ ď 1, λ ě 0u and Bb “ B X tp1´ Γqp` Γq`

λ1 pb´ aq | 0 ď Γ ď 1, λ1 ě 0u. Note that Ba X relbdpBq “ rp,qsB and Bb X relbdpBq “

rq,psB.

Proposition 4.2.2.1.10. All elements in Bq X relbdpBq are illuminated by the direction

p´ q.

Proof. Note that Bq Ď slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. Recall that relbdpBq Ď bdpKq. Hence,

Bq X relbdpBq Ď slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

X bdpKq. It follows from Lemma 4.2.2.1.3 that

Bq X relbdpBq Ď Upqq. This together with Proposition 4.2.2.1.2 implies that Bq X relbdpBq

is illuminated by the direction p´ q. �

Proposition 4.2.2.1.11. It is useful to note that relbdpBq “
`

Bp X relbdpBq
˘

Y
`

Bq X

relbdpBq
˘

.

Proof. Due to the basic fact that set intersection is distributive over set union, it follows

that
`

Bp X relbdpBq
˘

Y
`

Bq X relbdpBq
˘

“ relbdpBq X
`

Bp YBq

˘

.

Substitute B for Bp YBq, to get

relbdpBq X pBp YBqq “ relbdpBq XB.

Since relbdpBq Ď B, it follows that relbdpBq XB “ relbdpBq. �
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Notice that the line ` can be written as tp ` λ pa´ bq | λ P Ru or equivalently as

tp` p´λq pb´ aq | p´λq P Ru.

Let T “ max t}k` ´ k´} | k P Ku, where k` is the endpoint of the non-degenerate line

segment Prpkq XK lying in H`̀̀ and k´ is the other endpoint of that line segment lying in

H´́́.

Lemma 4.2.2.1.12. The following six directions will illuminate bdpKqzUpqq: 1
2
pq` aq´b,

1
2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3.

Proof. Let x P bdpKqzUpqq be arbitrarily chosen. This means x P bdpKq but x R Upqq.

Recall from Proposition 4.1.2 that bdpKq “ W Y relintpBq`̀̀ Y relintpBq´́́ and that W ,

relintpBq`̀̀ and relintpBq´́́ are pairwise disjoint. Thus, either x P W or x P relintpBq`̀̀ or

x P relintpBq´́́. It follows from x R Upqq that x R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

X bdpKq Ď Upqq.

Use de Morgan’s Law to get that x R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

or x R bdpKq. However,

x P bdpKq and therefore, x R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

.

Case 1: Suppose x P W “
`

Pr´1
prelbdpBqq X bdpKq

˘

. Specifically, suppose x P relbdpBq.

In summary, x P relbdpBq Ď B and x R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. Recall that Bq Ď

slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. It follows that x R Bq. Thus, x P BzBq Ď Bp and in particu-

lar, x P Bp X relbdpBq.

Remark. This case looks after illuminating any ground points on the wall through Bp X

relbdpBq.

The same method used to show that Proposition 4.2.2.1.11 held, can be used to show

Bp X relbdpBq “ pBa XBp X relbdpBqq Y pBb XBp X relbdpBqq .

Suppose, furthermore, that x P Bb XBp X relbdpBq “ rb,psB.

An argument will be presented below to show that any vector strictly between a´b and

q´ b illuminates the closed arc Bb XBp X relbdpBq “ rb,psB of the curve relbdpBq in the

x1x2-plane.
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A precise definition of a vector strictly between a´ b and q´ b is required. Denote the

angle between the vectors a´ b and q´ b, with value ranging from 0 to π, by α. Likewise,

denote the angle between the vectors q ´ a and b ´ a, whose value is between 0 and π,

by β. It should be noted that the vectors a ´ b and q ´ b are not parallel. To see this

recall that q P `1 “ ` ` t and b P `˚ “ ` ` γt for t ‰ o and 0 ă γ ă 1. Also, note that

q ´ b “ p ` λ1 pa´ bq ` t ´ p ´ λ2 pa´ bq ´ γt “ pλ1 ´ λ2q pa´ bq ` p1´ γq t, for some

λ1, λ2 P R. It can be similarly shown that the vectors q´ a and b´ a are not parallel. This

means that the angles α and β are strictly between 0 and π. Let Rx3pαq denote the linear

transformation which rotates the x1x2-plane counter-clockwise through an angle of α. The

vector q ´ b has the same direction as the vector a ´ b rotated counter-clockwise through

an angle of α in the x1x2-plane. Specifically,

q´ b “
}q´ b}

}a´ b}
¨Rx3 pαq pa´ bq “

}q´ b}

}a´ b}

»

—

—

—

—

–

cosα ´ sinα 0

sinα cosα 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

pa´ bq .

It should be clear that }q´b}
}a´b}

ą 0. A vector is strictly between the vectors a ´ b and q ´ b

if it has the same direction as the vector a ´ b rotated counter-clockwise in the x1x2-plane

through an angle strictly less than α but strictly greater than 0.

Sub-Lemma 4.2.2.1.13. Any vector strictly between a´b and q´b has the same direction

as

p1´ Bq pa´ bq ` B pq´ bq , for some 0 ă B ă 1.

Proof. First, notice that the angle between the vectors p1´ Bq pa´ bq`B pq´ bq and a´b,

which will be denoted by θ, is less than α. The triangle inequality is used below to get

cos θ “
xp1´ Bq pa´ bq ` B pq´ bq , a´ by

}}a´ b} ¨ } p1´ Bq pa´ bq ` B pq´ bq

“
p1´ Bq }a´ b}2 ` B xq´ b, a´ by

}a´ b} ¨ } p1´ Bq pa´ bq ` B pq´ bq }

ą
p1´ Bq }a´ b}2 ` B xq´ b, a´ by

p1´ Bq }a´ b}2 ` B}q´ b}}a´ b}
.
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It follows from the Cauchy-Schwarz inequality that xq´ b, a´ by ă }q ´ b}}a ´ b}. The

inequalities are strict due to the linear independence of the vectors a´b and q´b. Namely,

recall that equality does not hold in the triangle or Cauchy-Schwarz inequalities when the

vectors involved are linearly independent. This means that Proposition A.3 can be used and

it implies that

p1´ Bq }a´ b}2 ` B xq´ b, a´ by

p1´ Bq }a´ b}2 ` B}q´ b}}a´ b}
ą
B xq´ b, a´ by

B}q´ b}}a´ b}
“ cosα.

This means that cos θ ą cosα.

Notice that the vectors p1´ Bq pa´ bq ` B pq´ bq and a´ b are also linearly independent.

To see this observe that

p1´ Bq pa´ bq ` B pq´ bq “ p1´ Bq pa´ bq ` B ppλ1 ´ λ2q pa´ bq ` p1´ γq tq

“ pp1´ Bq ` B pλ1 ´ λ2qq pa´ bq ` B p1´ γq t.

Also, 0 ă B p1´ γq ă 1 since 0 ă B ă 1 and 0 ă 1 ´ γ ă 1. This, together with the

Cauchy-Schwarz inequality, imply that 1 ą cos θ. Therefore, 1 ą cos θ ą cosα. This means

that the angle θ between p1´ Bq pa´ bq ` B pq´ bq and a´ b lies in the interval

0 ă θ ă α ă π.

Now, notice that

B “
}B pq´ aq }

}q´ a}
. (4.8)

It follows from the Law of Sines that

}q´ a}

sinα
“
}q´ b}

sin β

and

}B pq´ aq }

sin θ
“
} p1´ Bq a` Bq´ b}

sin β
.

These equations are re-arranged and substituted into 4.8 to get

B “
} p1´ Bq a` Bq´ b} sin θ

}q´ b} sinα
.
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Let

A “

»

—

—

—

—

–

1´ B ` B }q´b}
}a´b}

cosα ´B
}q´b}
}a´b}

sinα 0

B
}q´b}
}a´b}

sinα 1´ B ` B }q´b}
}a´b}

cosα 0

0 0 1´ B ` B }q´b}
}a´b}

fi

ffi

ffi

ffi

ffi

fl

.

Then,

}a´ b}

} p1´ Bq a` Bq´ b}
pp1´ Bq pa´ bq ` B pq´ bqq

“
}a´ b}

} p1´ Bq a` Bq´ b}

ˆ

p1´ Bq pa´ bq ` B
}q´ b}

}a´ b}
Rx3 pαq

˙

pa´ bq

“
}a´ b}

} p1´ Bq a` Bq´ b}
A pa´ bq . (4.9)

Observe that

}a´ b}

} p1´ Bq a` Bq´ b}
¨ B ¨

}q´ b}

}a´ b}
sinα

“
}a´ b}

} p1´ Bq a` Bq´ b}
¨
} p1´ Bq a` Bq´ b} sin θ

}q´ b} sinα
¨
}q´ b}

}a´ b}
sinα

“ sin θ

and

}a´ b}

} p1´ Bq a` Bq´ b}

ˆ

1´ B ` B
}q´ b}

}a´ b}
cosα

˙

“
}a´ b}

} p1´ Bq a` Bq´ b}
´

B}a´ b}

} p1´ Bq a` Bq´ b}
`

B}q´ b}

} p1´ Bq a` Bq´ b}

ˆ

xq´ b, a´ by

}q´ b}}a´ b}

˙

“
p1´ Bq }a´ b}2 ` xB pq´ bq , a´ by

} p1´ Bq pa´ bq ` B pq´ bq } ¨ }a´ b}

“
xp1´ Bq pa´ bq ` B pq´ bq , a´ by

} p1´ Bq pa´ bq ` B pq´ bq } ¨ }a´ b}
“ cos θ

The entry in the third row and third column of the matrix in 4.9 can be re-written as follows:

}a´ b}

} p1´ Bq a` Bq´ b}

ˆ

1´ B ` B
}q´ b}

}a´ b}

˙

“
p1´ Bq }a´ b} ` B}q´ b}

} p1´ Bq pa´ bq ` B pq´ bq }
. (4.10)

In general, Equation 4.10 is not equal to 1. In fact, Equation 4.10 is equal to 1 if and only if

there exists some real number λ ě 0 such that B pq´ bq “ λ p1´ Bq pa´ bq. This is does not
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happen here; it was shown above that the vectors a´b and q´b are linearly independent.

However, the vector a´ b lies in the x1x2-plane. This implies that

xa´ b, e3y “ 0 “

ˆ

1´ B ` B
}q´ b}

}a´ b}

˙

xa´ b, e3y .

It follows that

}a´ b}

} p1´ Bq a` Bq´ b}
pp1´ Bq pa´ bq ` B pq´ bqq “

»

—

—

—

—

–

cos θ xa´ b, e1y ´ sin θ xa´ b, e2y

sin θ xa´ b, e1y ` cos θ xa´ b, e2y

0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

cos θ ´ sin θ 0

sin θ cos θ 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

pa´ bq

“ Rx3 pθq pa´ bq .

Recall from Proposition 4.2.2.1.8 that a,b P `˚ are distinct. This means that a ´ b ‰ o

and therefore, }a ´ b} ą 0. Also, recall that q P `1 is distinct from the points a,b P `˚,

since it lies on a distinct parallel line. Moreover, recall that 0 ă B ă 1. It follows that

p1´ Bq a`Bq´b “ p1´ Bq pa´ bq`B pq´ bq ‰ o and therefore, } p1´ Bq a`Bq´b} ą 0.

Hence,

}a´ b}

} p1´ Bq a` Bq´ b}
ą 0.

�

Now, notice that the line passing through the points b and p1´ Bq a`Bq intersects with

the line `˚ at the point b. It follows from Theorem 2.2.2.1 that the line through the points b

and p1´ Bq a`Bq is not parallel to the line `˚. This implies that the line through the points

b and p1´ Bq a ` Bq is also not parallel to the line `, since the lines ` and `˚ are parallel.

The intersection point of the line through the points b and p1´ Bq a` Bq with ` is

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

.
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To see that this point lies on the line `, observe the following argument:

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

“ p` pb´ pq ´
1´ γ

Bγ

´

p1´ B p1´ ξqq pa´ bq ` Bγ pq´ pq
¯

“ p` ξ pb´ aq ` p1´ γq pq´ pq ´ p1´ γq pq´ pq ´
p1´ γq p1´ B p1´ ξqq

Bγ
pa´ bq

“ p`

ˆ

´
p1´ γq p1´ B p1´ ξqq

Bγ
´ ξ

˙

pa´ bq P tp` λ pa´ bq | λ P Ru “ `.

Sub-Lemma 4.2.2.1.14.

Bb XBp Ď conv

"

p, p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

*

.

Proof. Suppose for a contradiction that this is not the case.

In particular, suppose that there exists z P Bb XBp such that

z R conv

"

p, p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

*

.

Figure 4.11: The point z lies somewhere in the shaded region
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This means that z P B and can be written as p` µ1 pq´ pq ` µ2 pb´ aq, for some

0 ď µ1 ď 1´ γ (4.11)

and for some

µ2 ą

ˆ

1´
µ1

1´ γ

˙ˆ

p1´ γq p1´ B p1´ ξqq

Bγ

˙

` ξ. (4.12)

Moreover, z lies on the ray emanating from the point

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q P ry,qq Ď pp,qq Ď relintpBq

with direction z´ b. Specifically,

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q`

ˆ

1`
ξ

µ2 ´ ξ

˙

pz´ bq

“ p` p1´ γq pq´ pq `
ξ p1´ γ ´ µ1q

µ2 ´ ξ
pq´ pq

`

ˆ

1`
ξ

µ2 ´ ξ

˙

´

p` µ1 pq´ pq ` µ2 pb´ aq ´ b
¯

“ p` p1´ γq pq´ pq `
ξ p1´ γ ´ µ1q

µ2 ´ ξ
pq´ pq

`

ˆ

1`
ξ

µ2 ´ ξ

˙

´

ξ pa´ bq ` p1´ γq pp´ qq ` µ1 pq´ pq ` µ2 pb´ aq
¯

“ p` p1´ γq pq´ pq `
ξ p1´ γ ´ µ1q

µ2 ´ ξ
pq´ pq `

ˆ

1`
ξ

µ2 ´ ξ

˙

p1´ γ ´ µ1q pp´ qq`

ˆ

µ2

µ2 ´ ξ

˙

pµ2 ´ ξq pb´ aq

“ p` µ1 pq´ pq ` µ2 pb´ aq “ z.

To verify that the point

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q

“ p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

pq´ pq

lies in the half-open interval ry,qq, one must show 1´ γ ď 1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

ă 1.

In showing that the lower bound of the inequality holds, first notice that it immediately
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follows from (4.12) that

µ2 ´ ξ ą

ˆ

1´
µ1

1´ γ

˙ˆ

p1´ γq p1´ B p1´ ξqq

Bγ

˙

.

Recall that 0 ă γ ă 1. It follows that 0 ă 1 ´ γ ă 1. This means p1´ γq2 ą 0. Therefore,

p1´ γq2 ` p1´ γq ą 0. Note that

1

1´ γ

´

p1´ γq2 ` p1´ γq
¯

“ p1´ γq ` 1 ą 0. (4.13)

This implies that
1

1´ γ
ą 0. Combine inequalities (4.13) and (4.11) to get 0 ď

µ1

1´ γ
ď 1.

It immediately follows that

0 ď 1´
µ1

1´ γ
ď 1. (4.14)

Recall that 0 ă B ă 1. Therefore, Bγ ą 0. Arguments similar to those above along with an

inequality similar to (4.13) can be used to show that

1

Bγ
ą 0. (4.15)

Also, recall that 0 ă ξ ă 1. It immediately follows that 0 ă 1 ´ ξ ă 1. This together with

Corollary A.2 implies that 0 ă B p1´ ξq ă B ă 1. This means 0 ă 1 ´ B p1´ ξq ă 1. Thus,

p1´ γq p1´ B p1´ ξqq ą 0. This together with (4.15) implies that

p1´ γq p1´ B p1´ ξqq

Bγ
ą 0. (4.16)

The product of non-negative real numbers is itself a non-negative real number, so together

(4.14) and (4.16) imply that

ˆ

1´
µ1

1´ γ

˙ˆ

p1´ γq p1´ B p1´ ξqq

Bγ

˙

ě 0.

This means µ2 ´ ξ ą 0. Therefore,

1

µ2 ´ ξ
ą 0. (4.17)

It follows from (4.11) that 1´ γ´µ1 ě 0. Therefore, ξ p1´ γ ´ µ1q ě 0. This together with

(4.17) implies that

ξ p1´ γ ´ µ1q

µ2 ´ ξ
ě 0.

104



Hence,

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

ě 1´ γ.

In verifying that 1 is a strict upper bound for 1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

, first notice that

γ pµ2 ´ ξq ą γ

ˆ

1´ γ ´ µ1

1´ γ

˙ˆ

p1´ γq p1´ B p1´ ξqq

Bγ

˙

“
p1´ γ ´ µ1q p1´ B p1´ ξqq

B
.

Again, recall that 0 ă B ă 1. This means that 0 ă 1´ B ă 1. Therefore,

B

ˆ

1

B
´ 1

˙

“ 1´ B ą 0.

This implies that
1

B
´ 1 ą 0 and thus,

1

B
ą 1. (4.18)

It was shown above that 1 ´ γ ´ µ1 ě 0 and 0 ă 1 ´ B p1´ ξq ă 1. This means that

p1´ γ ´ µ1q p1´ B p1´ ξqq ě 0. This together with (4.18) implies that

p1´ γ ´ µ1q p1´ B p1´ ξqq

B
ą p1´ γ ´ µ1q p1´ B p1´ ξqq .

Therefore,

γ pµ2 ´ ξq ą p1´ γ ´ µ1q p1´ B p1´ ξqq .

It follows from Corollary A.2 that B p1´ ξq ă 1´ξ. This means 1´B p1´ ξq ą 1´p1´ ξq “ ξ.

Therefore,

γ pµ2 ´ ξq ą ξ p1´ γ ´ µ1q .

Recall from above that
1

µ2 ´ ξ
ą 0. Hence,

ξ p1´ γ ´ µ1q

µ2 ´ ξ
ă γ.

It follows that

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

ă 1´ γ ` γ “ 1.
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By Theorem 2.10.10, the half-open segment

„ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q,b

˙

,

on the ray emanating from the point

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q

with direction z´ b, is contained in relintpBq. In other words,

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q` µ1 pz´ bq P relintpBq,

for some 0 ď µ1 ă
ξ

µ2 ´ ξ
. It follows that z R relintpBq.

By Corollary 2.10.12, the ray emanating from the point

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q P relintpBq

with direction z´ b intersects the relbdpBq at exactly one point,

b “

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙

p`

ˆ

1´

ˆ

γ ´
ξ p1´ γ ´ µ1q

µ2 ´ ξ

˙˙

q`
ξ

µ2 ´ ξ
pz´ bq .

Clearly, z ‰ b. Therefore, z R relbdpBq.

Thus, z R relintpBq Y relbdpBq “ B, which is a contradiction.

Hence,

Bb XBp Ď conv

"

p, p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

*

.

�

Consequently,

x P rb,psB “ Bb XBp X relbdpBq

Ď conv

"

p, p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

*

.

Notice that p1´ Bq a` Bq R Bb XBp. To see this, first observe that

p1´ Bq a` Bq “ a` B pq´ aq
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“ p` p1´ γq pq´ pq ` p1´ ξq pa´ bq ` B
`

p1´ ξq pb´ aq ` γ pq´ pq
˘

“ γ p1´ Bqp` p1´ γ p1´ Bqqq` p1´ Bq p1´ ξq pa´ bq ,

where 0 ă p1´ Bq p1´ ξq ă 1 and 0 ă γ p1´ Bq ă 1. This means that

p1´ Bq a` Bq R tp1´ Γqp` Γq` λ1 pb´ aq | 0 ď Γ ď 1, λ1 ě 0u.

This means

p1´ Bq a` Bq R B X tp1´ Γqp` Γq` λ1 pb´ aq | 0 ď Γ ď 1, λ1 ě 0u “ Bb.

Therefore, p1´ Bq a` Bq R Bb XBp.

Also, notice that

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

R Bb XBp.

To see this, begin by noticing that the open line segment pb, p1´ Bq a` Bbs belonging to

the line passing through b and p1´ Bq a`Bq that intersects pp,qq Ď relintpBq. Specifically,

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯

“ b`
ξ

1´ B p1´ ξq

´

p1´ B p1´ ξqq pa´ bq ` Bγ pq´ pq
¯

“ p` p1´ γq pq´ pq ` ξ pb´ aq ` ξ pa´ bq `
ξBγ

1´ B p1´ ξq
pq´ pq

“

ˆ

1´ γ

ˆ

1´
ξB

1´ B p1´ ξq

˙˙

q` γ

ˆ

1´
ξB

1´ B p1´ ξq

˙

p

with

0 ă
ξ

1´ B p1´ ξq
ă 1 (4.19)

and

0 ă γ

ˆ

1´
ξB

1´ B p1´ ξq

˙

ă 1, (4.20)

which means

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a`Bq
¯

P
`

b, p1´ Bq a`Bq
˘

X
`

p,q
˘

Ď intpKq.
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To see that (4.20) holds, first recall that 0 ă ξ ă 1 and 0 ă B ă 1. It immediately follows

that

0 ă ξB ă 1´ B ` ξB “ 1´ B p1´ ξq . (4.21)

Therefore,
`

1´ B p1´ ξq
˘2
ą 0 and notice that

1

1´ B p1´ ξq

`

1´ B p1´ ξq
˘2
“ 1´ B p1´ ξq ą 0.

This together with (4.21) implies that

1

1´ B p1´ ξq
ą 0. (4.22)

Combine (4.21) with (4.22) to get 0 ă
ξB

1´ B p1´ ξq
ă 1. This means that

0 ă 1´
ξB

1´ B p1´ ξq
ă 1. (4.23)

Recall that 0 ă γ ă 1. By Corollary A.2 and (4.23),

0 ă γ

ˆ

1´
ξB

1´ B p1´ ξq

˙

ă γ ă 1.

To see that (4.19) holds, first observe that B p1´ ξq ă 1´ ξ by Corollary A.2 and therefore,

0 ă ξ “ 1´ p1´ ξq ă 1´ B p1´ ξq . (4.24)

Combine (4.22) with (4.24) to get that

0 ă
ξ

1´ B p1´ ξq
ă 1. (4.25)

Now, recall that b P relbdpBq. It follows from Corollary 2.10.12 that the ray emanating

from the relative interior point

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯

P
`

b, p1´ Bq a` Bq
˘

with direction b ´ p1´ Bq a ` Bq intersects the relative boundary at exactly one point, b.

Note that

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

‰ b,
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since
1´ γ

Bγ
ą 0. To see that this inequality holds, first deduce that 0 ă Bγ ă 1. This means

that 0 ă 1´ Bγ ă 1. Notice that

Bγ

ˆ

1

Bγ
´ 1

˙

“ 1´ Bγ ą 0.

It follows that
1

Bγ
ą 1 and therefore,

1´ γ

Bγ
ą 1´ γ ą 0. (4.26)

Hence, the point b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

, on the ray emanating from

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯

P
`

b, p1´ Bq a` Bq
˘

with direction b´ p1´ Bq a` Bq, does not belong to relbdpBq.

Moreover, it follows from Theorem 2.10.10 that

´

b,

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯ı

Ď relintpBq.

In other words, the intersection between the ray emanating from

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯

with direction b´ p1´ Bq a` Bq and relintpBq is the half-open interval

´

b,

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a` Bq
¯ı

.

Every element in this half-open line segment has the form b ` λ
`

p1´ Bq a ` Bq ´ b
˘

, for

some 0 ă λ ď
ξ

1´ B p1´ ξq
. It follows from (4.26) that ´

1´ γ

Bγ
ă 0. Therefore,

b´
1´ γ

Bγ

´

p1´ Bq a`Bq´b
¯

R

´

b,

ˆ

1´
ξ

1´ B p1´ ξq

˙

b`
ξ

1´ B p1´ ξq

´

p1´ Bq a`Bq
¯ı

.

Hence,

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

R relintpBq.
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It follows that

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

R relbdpBq Y relintpBq “ B.

Therefore,

b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

R Bb XBp.

Accordingly, there exists real numbers 0 ă σ1 ď 1 and 0 ď σ2 ď 1´ σ1 ă 1 such that

x “ σ1p` σ2 pp1´ Bq a` Bqq ` p1´ σ1 ´ σ2q

ˆ

b´
1´ γ

Bγ

`

p1´ Bq a` Bq´ b
˘

˙

,

for any x P Bb XBp X relbdpBq “ rb,psB.

To show that x P BpXBbXrelbdpBq “ rb,psB is illuminated by any direction p1´ Bq a`

Bq´ b, for some 0 ă B ă 1, begin by considering the case where σ1 “ 1 and σ2 “ 0. In this

case, x “ p. Recall that p is a smooth point on the relbdpBq. This means the supporting line

of B at p, `, is unique. Notice that the line tp ` λ pp1´ Bq a` Bq´ bq | λ P Ru is parallel

to the line passing through the points b and p1´ Bq a ` Bq. Recall that the line passing

through the points b and p1´ Bq a ` Bq intersects the line ` at the point b `
1´ γ

Bγ

´

b ´

`

p1´ Bq a ` Bq
˘

¯

and therefore, ` is not parallel to the line passing through the points b

and p1´ Bq a` Bq. Hence, ` is not parallel to the line tp` λ pp1´ Bq a` Bq´ bq | λ P Ru.

It follows from Proposition 2.10.1.4 that

tp` λ pp1´ Bq a` Bq´ bq | λ P Ru X relintpBq ‰ H.

This means that either the ray emanating from p with direction p1´ Bq a`Bq´b intersects

relintpBq or the ray emanating from p with direction b´
`

p1´ Bq a`Bq
˘

intersects relintpBq.

Recall that B lies between the lines ` and `1. This implies that the ray which passes through

the region between the lines ` and `1 will intersect relintpBq. Observe that the point p `

1´ γ

Bγ

´

p1´ Bq a ` Bq ´ b
¯

on the ray emanating from p with direction p1´ Bq a ` Bq ´ b

intersects the line `˚, which lies in the region between ` and `1:

p`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯
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“ p` p1´ γq pq´ pq `
1´ B p1´ ξq p1´ γq

Bγ
pa´ bq

“ y `
1´ B p1´ ξq p1´ γq

Bγ
pa´ bq P `˚.

Therefore, the direction p1´ Bq a ` Bq ´ b illuminates p. This means that there exists

an element d, which belongs to relintpBq and the ray emanating from p with direction

p1´ Bq a` Bq´ b.

Note that by Theorem 2.10.10, pp,ds Ď relintpBq. Let d1 P pp,ds be chosen so that

d1 ´ p “ η
`

p1´ Bq a` Bq´ b
˘

,

for some 0 ă η ă 1. It follows from Theorem 2.10.10 that

`

p1´ Bq a` Bq,d1
‰

Ď relintpBq.

Now, consider the case where 0 ă σ1 ă 1 and 0 ă σ2 ď 1´ σ1. It follows that

0 ď 1´ σ1 ´ σ2 ď 1´ σ1 ă 1. (4.27)

The point

x`

ˆ

p1´ σ1 ´ σ2q `
p1´ σ1 ´ σ2q p1´ γq

Bγ
` ησ1

˙

`

p1´ Bq a` Bq´ b
˘

belongs to both the ray emanating from x with direction p1´ Bq a`Bq´b and the half-open

line segment
`

p1´ Bq a` Bq,d1
‰

Ď relintpBq.

To see this, first observe that

p1´ σ1 ´ σ2q `
p1´ σ1 ´ σ2q p1´ γq

Bγ
` ησ1 ą 0.

This follows from the inequalities (4.27), (4.26), 1 ă σ1 ď 1 and 0 ă η ă 1.

Then, notice that

x`

ˆ

p1´ σ1 ´ σ2q `
p1´ σ1 ´ σ2q p1´ γq

Bγ
` ησ1

˙

`

p1´ Bq a` Bq´ b
˘

“ σ1p` σ2

`

p1´ Bq a` Bq
˘

` p1´ σ1 ` σ2q

ˆ

b´
1´ γ

Bγ

`

p1´ Bq a` Bq´ b
˘

˙

`
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ˆ

p1´ σ1 ´ σ2q `
p1´ σ1 ´ σ2q p1´ γq

Bγ
` ησ1

˙

`

p1´ Bq a` Bq´ b
˘

“ σ1p` p1´ σ1q
`

p1´ Bq a` Bq
˘

``ησ1

`

p1´ Bq a` Bq´ b
˘

“ σ1d
1
` p1´ σ1q

`

p1´ Bq a` Bq
˘

P
`

p1´ Bq a` Bq,d1
‰

,

since 0 ă σ1 ă 1.

Hence, the directions p1´ Bq a`Bq´b illuminate the closed curve BbXBpXrelbdpBq “

rb,psB, for any 0 ă B ă 1. Recall that the directions p1´ Bq a` Bq´ b and Rx3 pθq pa´ bq

are parallel. This means Rx3 pθq pa´ bq illuminates the closed curve Bb XBp X relbdpBq “

rb,psB, for any 0 ă θ ă α.

Similar arguments can be used to show that for any angle 0 ă Υ ă β there exists some

scalar 0 ă B1 ă 1 such that the vector Rx3 p´Υq pb´ aq is parallel to p1´ B1q pb´ aq `

B1 pq´ aq and ultimately, that the directions Rx3 p´Υq pb´ aq illuminate the closed arc

Ba XBp X relbdpBq “ rp, asB for any 0 ă Υ ă β.

It follows that that any of the directions Rx3pθq pa´ bq together with any of the directions

Rx3pΥq pb´ aq, for any 0 ă θ ă α and 0 ă Υ ă β, will illuminate the closed arc Bp X

relbdpBq “ rb, asB of the closed curve relbdpBq in the x1x2-plane.

For the sake of simplicity, choose the specific directions 1
2
pq` aq ´ b and 1

2
pq` bq ´ a.

Case 2: Suppose that either x P
´

W zrelbdpBq
¯

XH`̀̀ or x P relintpBq`̀̀ “ Pr´1
prelintpBqq X

bdpKq XH`̀̀.

Recall from above that x R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. Note that slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

can be expressed as
!

z P E3 | Prpzq P
´

1´ rΛ
¯

`` rΛ`1, for Λ ď rΛ ď 1
)

. This means Prpxq R
´

1´ rΛ
¯

` ` rΛ`1, for any Λ ď rΛ ď 1. Therefore, Prpxq R slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. Again,

recall that Bq Ď slab
“

Pr´1
p`˚q,Pr´1

p`1q
‰

. Hence, Pr pxq R Bq. It follows that Pr pxq P

BzBq Ď Bp.

Suppose, furthermore, that Prpxq P Bb.

It was shown in Case 1 that

Bb XBp Ď conv

"

p, p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

*
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and that

p1´ Bq a` Bq,b`
1´ γ

Bγ

´

b´
`

p1´ Bq a` Bq
˘

¯

R Bb XBp.

This means Prpxq can be written as

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

,

for some 0 ă σ11 ď 1 and 0 ď σ12 ă 1´ σ11.

However, it is important in this case to notice that

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

R Bb XBp,

for

1 ě σ11 ě
Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

and

1´ γ

Bγ ` 1´ γ
ă σ12 ă 1´ σ11.

To see this, observe that

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

“ p`

„

p1´ σ11q p1´ γq `

ˆ

σ12 ´ p1´ σ
1
1 ´ σ

1
2q

1´ γ

Bγ

˙

Bγ



pq´ pq`

„ˆ

σ12 ´ p1´ σ
1
1 ´ σ

1
2q

1´ γ

Bγ

˙

p1´ B p1´ ξqq ´ p1´ σ11q ξ



pa´ bq

and observe that

ˆ

σ12 ´ p1´ σ
1
1 ´ σ

1
2q

1´ γ

Bγ

˙

p1´ B p1´ ξqq ´ p1´ σ11q ξ

“ σ12 p1´ B p1´ ξqq

ˆ

1`
1´ γ

Bγ

˙

´ p1´ σ11q

ˆ

ξ ` p1´ B p1´ ξqq
1´ γ

Bγ

˙

ą

ˆ

1´ γ

Bγ ` 1´ γ

˙ˆ

Bγ ` 1´ γ

Bγ

˙

p1´ B p1´ ξqq ´ p1´ σ11q

ˆ

ξ ` p1´ B p1´ ξqq
1´ γ

Bγ

˙

“ σ11

ˆ

p1´ B p1´ ξqq p1´ γq ` Bγξ

Bγ

˙

´ ξ

ě

ˆ

Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙ˆ

p1´ B p1´ ξqq p1´ γq ` Bγξ

Bγ

˙

´ ξ “ ξ ´ ξ “ 0.
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Moreover,

p1´ σ11q p1´ γq `

ˆ

σ12 ´ p1´ σ
1
1 ´ σ

1
2q

1´ γ

Bγ

˙

Bγ “ σ12 pBγ ` 1´ γq

ą
1´ γ

Bγ ` 1´ γ
pBγ ` 1´ γq “ 1´ γ ą 0

and it follows from Corollary A.2 that

p1´ σ11q p1´ γq `

ˆ

σ12 ´ p1´ σ
1
1 ´ σ

1
2q

1´ γ

Bγ

˙

Bγ “ σ12 pBγ ` 1´ γq

ď σ12 ď 1´ σ11 ă 1.

In particular, this implies that

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

P Ba.

Recall from above that Ba “ pBzBbq Y rp,qs Therefore,

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

R Bb.

And thus,

σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

R Bb XBp.

This means

Pr pxq “ σ11p` σ
1
2

`

p1´ Bq a` Bq
˘

` p1´ σ11 ´ σ
1
2q

ˆ

b`
1´ γ

Bγ

´

p1´ Bq a` Bq´ b
¯

˙

,

for some

0 ă σ11 ď
Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

and

0 ă σ12 ď
1´ γ

Bγ ` 1´ γ
.

In verifying the upper bound of σ11 is well defined, first notice that

`

p1´ γq p1´ B p1´ ξqq ` Bγξ
˘

ˆ

Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

“ Bγξ
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and

`

p1´ γq p1´ B p1´ ξqq`Bγξ
˘

ˆ

1´
Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

“ p1´ γq p1´ B p1´ ξqq .

Recall from (4.21) that 1 ´ B p1´ ξq ą 0. It follows immediately from 0 ă γ ă 1 that

1´ γ ą 0. Therefore,

p1´ B p1´ ξqq p1´ γq ą 0. (4.28)

Also, recall that 0 ă B, ξ ă 1. This means that Bγξ ą 0. Thus,

p1´ B p1´ ξqq p1´ γq ` Bγξ ą 0.

Hence,

0 ă
Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ
ă 1.

To verify the upper bound of σ12 is well defined, observe that

`

Bγ ` 1´ γ
˘

ˆ

1´ γ

Bγ ` 1´ γ

˙

“ 1´ γ ą 0

and
`

Bγ ` 1´ γ
˘

ˆ

1´ σ11 ´
1´ γ

Bγ ` 1´ γ

˙

“ pBγ ` 1´ γq p1´ σ11q ´ p1´ γq .

Again, recall that 0 ă γ, B ă 1. Consequently, Bγ ą 0 and 1 ´ γ ą 0. This means

Bγ ` 1´ γ ą 0 and thus,

1´ γ

Bγ ` 1´ γ
ą 0.

Use the improved upper bound on σ11 to get

pBγ ` 1´ γq p1´ σ11q ´ p1´ γq

ě pBγ ` 1´ γq

ˆ

p1´ γq p1´ B p1´ ξqq

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

´ p1´ γq

“ p1´ γq

ˆ

pBγ ` 1´ γq p1´ B p1´ ξqq ´ p1´ γq p1´ B p1´ ξqq ´ Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

“
p1´ γq Bγ p1´ ξq p1´ Bq

p1´ γq p1´ B p1´ ξqq ` Bγξ
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Notice that

pp1´ γq p1´ B p1´ ξqq ` Bγξq

ˆ

p1´ γq Bγ p1´ ξq p1´ Bq

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

“ p1´ γq Bγ p1´ ξq p1´ Bq ,

where p1´ γq p1´ B p1´ ξqq` Bγξ ą 0 from (4.28) and p1´ γq Bγ p1´ ξq p1´ Bq ą 0 can be

similarly shown. Thus,

p1´ γq Bγ p1´ ξq p1´ Bq

p1´ γq p1´ B p1´ ξqq ` Bγξ
ą 0,

which implies that pBγ ` 1´ γq p1´ σ11q ´ p1´ γq ą 0. Hence,

1´ γ

Bγ ` 1´ γ
ă 1´ σ11.

It follows from Case 1 that

Pr pxq `

ˆ

p1´ σ11 ´ σ
1
2q

ˆ

1`
1´ γ

Bγ

˙

` ησ11

˙

`

p1´ Bq a` Bq´ b
˘

“ σ11d
1
` p1´ σ11q pp1´ Bq a` Bqq P

`

p1´ Bq a` Bq,d1
‰

Recall that T “ max t}k` ´ k´} | k P Ku. It follows that

x “ Pr pxq ` ρ ¨
T
2

e3,

for some 0 ă ρ ď 1. Let ζ “ p1´ σ11 ´ σ
1
2q

ˆ

1`
1´ γ

Bγ

˙

` ησ11.

Now, observe that

x`
´ρ

2

¯

„ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

´ T e3



“ Pr pxq ` ρ ¨
T
2

e3 ´ ρ ¨
T
2

e3 `

´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

“ Pr pxq `
´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙

´

σ11d
1
` p1´ σ11q

`

p1´ Bq a` Bq
˘

´ Pr pxq
¯

“

ˆ

1´
´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙˙

Pr pxq`

´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙

´

σ11d
1
` p1´ σ11q

`

p1´ Bq a` Bq
˘

¯

.

It will be shown that

x`
´ρ

2

¯

„ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

´ T e3


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P
`

Pr pxq , σ11d
1
` p1´ σ11q pp1´ Bq a` Bqq

‰

.

First, notice that

`

p1´ γq p1´ B p1´ ξqq ` Bγξ
˘

ˆ

Bγ ` 1´ γ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

“ Bγ ` 1´ γ.

Recall from (4.28) that p1´ γq p1´ B p1´ ξqq ` Bγξ ą 0. Also, recall from above that

Bγ ` 1´ γ ą 0. Hence,

Bγ ` 1´ γ

p1´ B p1´ ξqq p1´ γq ` Bγξ
ą 0. (4.29)

Then, observe that

ζ “ p1´ σ11 ´ σ
1
2q

ˆ

1`
1´ γ

Bγ

˙

` ησ11 ą ´σ
1
2

ˆ

1`
1´ γ

Bγ

˙

` p1´ σ11q

ˆ

1`
1´ γ

Bγ

˙

.

Use the improved upper bound on σ11 to get

ě ´

ˆ

1´ γ

Bγ ` 1´ γ

˙ˆ

Bγ ` 1´ γ

Bγ

˙

` p1´ σ11q

ˆ

1`
1´ γ

Bγ

˙

“ 1´ σ11

ˆ

Bγ ` 1´ γ

Bγ

˙

Now, use the improved upper bound on σ12 to get

ě 1´

ˆ

Bγξ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙ˆ

Bγ ` 1´ γ

Bγ

˙

“ 1´

ˆ

ξ

1´ B p1´ ξq

˙ˆ

Bγ ` 1´ γ

p1´ γq p1´ B p1´ ξqq ` Bγξ

˙

Then, by (4.25), (4.29) and Proposition A.1

ě 1´
ξ

1´ B p1´ ξq
.

Recall from (4.25) that

0 ă
ξ

1´ B p1´ ξq
ă 1.

It immediately follows that

ζ ą 1´
ξ

1´ B p1´ ξq
ą 0. (4.30)
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Also, notice that

ζ

ˆ

1

ζ

˙

“ 1 ą 0.

This together with (4.30) implies that
1

ζ
ą 0. Multiply (4.30) by

1

ζ
to get

0 ă

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙

ă 1. (4.31)

Recall that 0 ă ρ ď 1. It immediately follows that 0 ă
ρ

2
ď

1

2
ă 1. Combine this with

(4.31) to get

0 ă
´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙

ă 1.

It follows that

x`
´ρ

2

¯

„ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

´ T e3



“

ˆ

1´
´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙˙

Pr pxq

`

´ρ

2

¯

ˆ

1´
ξ

1´ B p1´ ξq

˙ˆ

1

ζ

˙

´

σ11d
1
` p1´ σ11q

`

p1´ Bq a` Bq
˘

¯

P
`

Pr pxq , σ11d
1
` p1´ σ11q pp1´ Bq a` Bqq

‰

Recall from Case 1 that any element in
`

p1´ Bq a` Bq,d1
‰

belongs to relintpBq. It follows

from this and Theorem 2.10.10 that

`

Pr pxq , σ11d
1
` p1´ σ11q pp1´ Bq a` Bqq

‰

Ď relintpBq.

Thus,

x`
´ρ

2

¯

„ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

´ T e3



P relintpBq Ď intpKq.

Hence, the direction

ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

´ T e3

illuminates any x P
´

W zrelbdpBq
¯

XH`̀̀ or x P relintpBq`̀̀ as long as Pr pxq P Bb.
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A very similar method can be used to show that the direction

ˆ

1´
1´ ξ

1´ B1ξ

˙

`

p1´ B1qb` B1q´ a
˘

´ T e3

illuminates any x P
´

W zrelbdpBq
¯

XH`̀̀ or x P relintpBq`̀̀ where Prpxq P Ba.

The case where x P relintpBq´́́ or x P
´

W zrelbdpBq
¯

XH´́́ will follow similarly with the

directions
ˆ

1´
ξ

1´ B p1´ ξq

˙

`

p1´ Bq a` Bq´ b
˘

` T e3

and
ˆ

1´
1´ ξ

1´ B1ξ

˙

`

p1´ B1qb` B1q´ a
˘

` T e3.

For the sake of simplicity, choose the specific directions

ˆ

1´
2ξ

1` ξ

˙ˆ

1

2
pq` aq ´ b

˙

˘ T e3

and
ˆ

1´
2 p1´ ξq

2´ ξ

˙ˆ

1

2
pq` bq ´ a

˙

˘ T e3.

Thus, the seven directions p´q, 1
2
pq` aq´b, 1

2
pq` bq´a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘

T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate K. �

Proposition 4.2.2.1.15. In the special case where all elements of relbdpBq are ground

points, the five directions p´ q, 1
2
pq` aq ´ b, 1

2
pq` bq ´ a, e3 and ´e3 illuminate K.

Proof. In this special case, W “ Pr´1
`

relbdpBq
˘

X bdpKq “ relbdpBq as a result of ev-

ery element from relbdpBq being a ground point. Recall from Proposition 4.2.2.1.11 that

relbdpBq “
`

Bp X relbdpBq
˘

Y
`

Bq X relbdpBq
˘

. It follows from Proposition 4.2.2.1.10

that all elements of Bq X relbdpBq are illuminated by p ´ q and it follows from Case 1 of

Lemma 4.2.2.1.12 that any element of Bp X relbdpBq is illuminated by either 1
2
pq` aq ´ b

or 1
2
pq` bq ´ a. Thus, W is illuminated by the three directions p ´ q, 1

2
pq` aq ´ b and

1
2
pq` bq ´ a.

To see that the direction ´e3 will illuminate relintpBq`̀̀, observe the following argument.
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Suppose x P relintpBq`̀̀ “ Pr´1
prelintpBqq X bdpKq X H`̀̀. Notice that this means x P

Pr´1
prelintpBqq “ tz P E3 | Pr pzq P relintpBqu. This implies that Pr pxq P relintpBq. Just

like in Case 2 of Lemma 4.2.2.1.12, there exists some real number 0 ă ρ ď 1 such that

x “ Prpxq ` ρ ¨ T
2
e3. It follows that

x` ρ ¨
T
2
p´e3q “ Prpxq ` ρ ¨

T
2

e3 ´ ρ ¨
T
2

e3 “ Prpxq P relintpBq,

which shows that the vector ´e3 illuminates any element in relintpBq`̀̀.

A similar argument can be used to show that the direction e3 illuminates relintpBq´́́.

Recall from Proposition 4.1.2 that bdpKq “ W Y relintpBq`̀̀ Y relintpBq´́́ and that the sets

W , relintpBq`̀̀ and relintpBq´́́ are pairwise disjoint. Hence, the directions p´q, 1
2
pq` aq´b,

1
2
pq` bq ´ a, e3 and ´e3 illuminate K, in this special case. �

4.2.2.2 Suppose that q is a cliff point.

In general, the direction p´ q does not illuminate the cliff, rq´,q`s, at q.

Proposition 4.2.2.2.1. Let τ “ }q` ´ q´}. The directions p ´ q ´ τe3 and p ´ q ` τe3

illuminate the cliff rq´,q`s at q.

Proof. Let z P rq,q`s be arbitrary. This means that there exists 0 ď $ ď 1 such that

z “ p1 ´ $qq ` $q`. Recall from Claim (i) in §4.2.2.1 that pp,qq Ď intpKq; therefore,

1{2 pp` qq P intpKq. It follows from Theorem 2.10.10 that r1{2 pp` qq ,q`q Ď intpKq and

pq´, 1{2 pp` qqs Ď intpKq. Therefore, 1{2
`

1{2 pp` qq ` q`
˘

, 1{2
`

1{2 pp` qq ` q´
˘

P intpKq.

By Theorem 2.10.15,

„

1

2
pp` qq ,

1

2

ˆ

1

2
pp` qq ` q`

˙

Ď intpKq

and
„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



Ď intpKq.

The ray rzp´q´τe3 intersects the closed line segment
“

1{2 p
1{2 pp` qq ` q´q , 1{2 pp` qq

‰

.

To see this, observe that the element z ` 1`$
4
pp´ q´ τe3q of the ray rzp´q´τe3 can be

120



re-written as follows:

z`
1`$

4
pp´ q´ τe3q “ p1´$qq`$q` `

1`$

4
pp´ q´ τe3q

“ p1´$qq`$
´

q`
τ

2
e3

¯

`
1`$

4
pp´ q´ τe3q

“
1´$

2

´

q´
τ

2
e3

¯

`
$

2
q`

$ `$ ´$

4
p´

$

4
q`

1

4
pp` qq

“
1´$

2

´1

2
pp` qq ` q´

¯

`
$

2
pp` qq

Ď

„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



Ď intpKq,

for 0 ă 1
4
ď
$

2
ď 1

2
ă 1.

Let z1 P rq´,qs be arbitrary. A nearly identical proof to the one directly above will show that

the ray rz
1

p´q`τe3
intersects the line segment

“

1{2 pp` qq , 1{2 p
1{2 pp` qq ` q`q

‰

and therefore,

intersects intpKq. �

Proposition 4.2.2.2.2. There exists a real number χ1 ą 0 such that the directions p´q`τe3

and p ´ q ´ τe3 illuminate,
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq, an open neighbourhood of

W`1XrelbdpBq on bdpKq.

Proof. Let I “ r1{2 p
1{2 pp` qq ` q´q , 1{2 pp` qqs Y r1{2 pp` qq , 1{2 p

1{2 pp` qq ` q`qs and

let χ1 “ inf t}xi ´ xk} | xi P I, xk P bdpKqu. It is important to verify that χ1 ą 0 and

B pn, χ1q Ď K, for any n P I.

First, observe that Proposition 2.10.5 and Corollary 2.10.8 imply that

“

1
{2
`

1
{2 pp` qq ` q´

˘

, 1
{2 pp` qq

‰

and
“

1
{2 pp` qq , 1

{2
`

1
{2 pp` qq ` q`

˘‰

are compact. It follows by Proposition 2.8.3 that

„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



ď

„

1

2
pp` qq ,

1

2

ˆ

1

2
pp` qq ` q`

˙

is compact. Furthermore, note that bdpKq is closed. This means that by Theorem 2.8.5,

there exist elements k1 P I and k2 P bdpKq such that

}k1 ´ k2} “ inf t}xi ´ xk} | xi P I, xk P bdpKqu
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“ χ1.

Recall from Proposition 4.2.2.2.1 that

„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



,

„

1

2
pp` qq ,

1

2

ˆ

1

2
pp` qq ` q`

˙

Ď intpKq.

This means that

„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



ď

„

1

2
pp` qq ,

1

2

ˆ

1

2
pp` qq ` q`

˙

Ď intpKq.

This together with Theorem 2.5.7 implies that

ˆ„

1

2

ˆ

1

2
pp` qq ` q´

˙

,
1

2
pp` qq



ď

„

1

2
pp` qq ,

1

2

ˆ

1

2
pp` qq ` q`

˙˙

č

bdpKq “ H.

Hence, k1 ‰ k2 and therefore, χ1 ą 0.

Finally, let n P I and g P B pn, χ1q be arbitrarily chosen. Then,

}g ´ n} ă χ1 ď inf t}n´ xk} | xk P bdpKqu ď }k´ n},

for all k P bdpKq. This means g R bdpKq.

Since n P intpKq, it follows by Corollary 2.10.12 that there exists pk P bdpKq such that
!

pk
)

“ rng´n X bdpKq. Since K is convex,
”

n, pk
ı

Ď K. Moreover,

g “

¨

˝1´
}g ´ n}
›

›

›

pk´ n
›

›

›

˛

‚n`
}g ´ n}
›

›

›

pk´ n
›

›

›

pk P
”

n, pk
ı

,

since }g ´ n} ă
›

›

›

pk´ n
›

›

›
.

Hence, B pn, χ1q Ď K, for any n P I.

It is, also, important to verify that W`1XrelbdpBq`χ
1B po, 1q X bdpKq contains W`1XrelbdpBq

and is open in bdpKq.

Let x P W`1XrelbdpBq be arbitrarily chosen. Note that

χ1B po, 1q “ tχ1z | }z} ă 1u
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“

"

z P E3

ˇ

ˇ

ˇ

ˇ

1

χ1
}z} ă 1

*

“
 

z P E3
ˇ

ˇ }z} ă χ1
(

“ B po, χ1q . (4.32)

Clearly, o P χ1B po, 1q. It follows that x “ x` o P W`1XrelbdpBq ` χ
1B po, 1q. Thus,

W`1XrelbdpBq Ď W`1XrelbdpBq ` χ
1B po, 1q .

Recall that W`1XrelbdpBq “ Pr´1
p`1 X relbdpBqq X bdpKq. This means

W`1XrelbdpBq “ W`1XrelbdpBq X bdpKq Ď
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq.

It follows, by Equation 4.32, that W`1XrelbdpBq ` χ1B po, 1q “ W`1XrelbdpBq ` B po, χ1q. By

expanding and simplifying,

W`1XrelbdpBq ` B po, χ1q “
ď

xPW`1XrelbdpBq

px` B po, χ1qq “
ď

xPW`1XrelbdpBq

B px, χ1q .

By (i) and (iv) of Theorem 2.5.1,
Ť

xPW`1XrelbdpBq
B px, χ1q is open.

Thus, W`1XrelbdpBq ` χ1B po, 1q is open in E3. Equipping bdpKq with the subspace topology

TbdpKq “ tV X bdpKq | V is open in E3u, it can be seen that

`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq P TbdpKq

and therefore,
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

X bdpKq is open in bdpKq.

Finally, it must be verified that
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

XbdpKq is illuminated by either

p´ q` τe3 or p´ q´ τe3.

Let z P
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

XbdpKq be arbitrarily chosen. It follows, by definition,

that there exists a scalar 0 ď µ1 ă 1 and a unit vector v such that

z “ x` µ1χ1v,

for some x P W`1XrelbdpBq. Here, in §4.2.2.2,

W`1XrelbdpBq “ Pr´1
p`1 X relbdpBqq X bdpKq “ Pr´1

ptquq X bdpKq “ rq´,q`s.
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It follows from the previous Proposition 4.2.2.2.1 that x can be illuminated by either p´q`

τe3 or p´q´ τe3. Suppose, without loss of generality, that x is illuminated by p´q´ τe3.

This means that there exists a real number λ1 ą 0 such that

x` λ1 pp´ q´ τe3q P I Ď intpKq.

It follows from above that

B px` λ1 pp´ q´ τe3q , χ
1
q Ď K.

Let z1 be an arbitrarily chosen element from B
´

z` λ pp´ q´ τe3q , χ
1 p1´ µ1q

¯

, where the

point z` λ pp´ q´ τe3q is an element of the ray rzp´q´τe3 . Observe that

}z1 ´ px` λ1 pp´ q´ τe3qq}

ď }z1 ´ pz` λ1 pp´ q´ τe3qq} ` }z` λ
1
pp´ q´ τe3q ´ px` λ

1
pp´ q´ τe3qq}

ă χ1 p1´ µ1q ` }x` µ1χ1v ` λ1 pp´ q´ τe3q ´ px` λ
1
pp´ q´ τe3qq}

“ χ1 p1´ µ1q ` µ1χ1}v} “ χ1.

This implies that

B pz` λ1 pp´ q´ τe3q , χ
1
p1´ µ1qq Ď B px` λ1 pp´ q´ τe3q , χ

1
q .

Thus, z` λ1 pp´ q´ τe3q P r
z
p´q´τe3

X intpKq. �

It follows from Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9 that there

exists points a,b P relbdpBq X
`

W`1XrelbdpBq ` χ1B po, 1q
˘

such that the points p, a,q and b

follow each other in this order when travelling counter-clockwise on relbdpBq starting at p.

Moreover, the line passing through a and b is parallel to ` and `1. By Lemma 4.2.2.1.12, the

directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate bdpKqz
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

.

This means that the eight directions p´ q˘ τe3
1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 illuminate bdpKq.
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4.2.3 Second Major Case of Theorem 4.1

In this second case, the illumination of K is constructed when relbdpBq contains at least one

side and has the property that either:

(i) the complete antipode of the midpoint of one of the sides of relbdpBq is a

single point; or

(ii) for each side of relbdpBq, there exists another side parallel to it and the wall

through one side of relbdpBq is degenerate.

4.2.3.1 Suppose relbdpBq contains a side such that the complete antipode of its

midpoint p is a single point q.

If q is a ground point, then K can be illuminated using the exact same procedure as in

§4.2.2.1. This means 7 directions illuminate K.

If q is a cliff point, then K can be illuminated using the exact same procedure as in §4.2.2.2.

This means 8 directions illuminate K.

4.2.3.2 For each side of relbdpBq, suppose that there exists another side parallel

to it. Furthermore, suppose that at least one wall through a side of

relbdpBq is degenerate.

Let ru,vs Ď relbdpBq be a side with endpoints u,v such that Wru,vs “ ru,vs. Denote

the other side of B parallel to ru,vs by rw, zs where the points u,v,w and z follow each

other in this order when travelling counter-clockwise on relbdpBq, starting at the point u.

Since the sides ru,vs and rw, zs are parallel, there exists a real number ~ ą 0 such that

w ´ z “ ~ pv ´ uq. Let p “ 1
2
pw ` zq and let q “ 1

2
pu` vq. Moreover, let ` denote the

supporting line of B at the side rz,ws and let `1 be the supporting line of B at the side

ru,vs. It follows that ` and `1 are parallel and therefore, there exists a vector t ‰ o such

that `1 “ `` t.
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Proposition 4.2.3.2.1. The directions p´ u and p´ v will illuminate the side ru,vs.

Proof. As established in Properties 4.1.1, B is convex. It follows that rp,us , rp,vs Ď B.

Suppose for a contradiction that rp,us Ď relbdpBq. Then, there exists a supporting line of B

which contains the closed line segment rp,us; denote it by `1. Recall that p is the midpoint of

the side rw, zs. Therefore, the lines ` and `1 support B at p. It follows from Theorem 2.2.2.1

that `1 is not parallel to ` or `1 since it intersects these lines at the points p and u, respectively.

Notice that `1 “ tp` λ pu´ pq | λ P Ru. It follows from Theorem 2.10.1.3 that B should

be completely contained in one of the closed half-spaces determined by `1. However, notice

that the points p, u, w “ p ` ~
2
pv ´ uq, q “ u ` 1

2
pv ´ uq, and v “ u ` pv ´ uq lie in

the closed half-space tp` λ pu´ pq ` µ pv ´ uq | λ, µ P R such that µ ě 0u determined by

`1, but the point z “ p` ~
2
pu´ vq P B does not lie in the same closed half-space determined

by `1. This is a contradiction. Therefore, pp,uq Ę relbdpBq since p,u P relbdpBq. Recall

from Properties 4.1.1 that B is closed and has non-empty interior in the x1x2-plane. This

means that B “ relintpBq Y relbdpBq. Also, recall that relintpBq X relbdpBq “ H. Thus,

pp,uq Ď relintpBq Ď intpKq. A nearly identical argument can be used to show that pp,vq Ď

relintpBq Ď intpKq.

This implies that the rays rup´u and rvp´v intersect relintpBq Ď intpKq. In other words,

the direction p´ u illuminates the point u and the direction p´ v illuminates the point v.

Let x P pu,vq be arbitrarily chosen. This means that there exists 0 ă ð ă 1 such that

x “ ðu` p1´ ðqv. Consider the point x` ð pp´ uq on the ray rxp´u:

x` ð pp´ uq “ ðu` p1´ ðqv ` ð pp´ uq

“ ðp` p1´ ðqv P pp,vq Ď relintpBq.

This means that direction p´ u illuminates all points in the open line segment pu,vq. �

A similar argument to the one used in the proof of Proposition 4.2.2.2.2 can be used

to show that there exists a real number χ1 ą 0 such that the directions p ´ u and p ´ v
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illuminate the set W`1XrelbdpBq ` B po, χq, which is an open neighbourhood around the side

ru,vs on the bdpKq.

Then, by Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists

points a,b P relbdpBq X
`

W`1XrelbdpBq`χ
1B po, 1q

˘

such that the points p, z, a,u,q,v,b and

w follow each other in this order when travelling counter-clockwise on relbdpBq starting at

p. Moreover, the line passing through a and b is parallel to ` and `1. By Lemma 4.2.2.1.12,

the directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate bdpKqz
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

.

This means that the eight directions p´ u, p´ v, 1
2
pq` aq ´ b,1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 illuminate bdpKq.

4.2.4 Third Major Case of Theorem 4.1

Recall from Properties 4.1.1 that B is a convex body in the x1x2-plane. It follows that B

is a convex body in E2. By the John - Löwner Theorem in E2, there exists a unique ellipse

E of maximal volume such that E Ă B Ă 2 E . It follows, by definition, that there exists an

invertible linear transformation T : E2 Ñ E2 and a vector a P E2 such that

E “ T
`

B2
ro, 1s

˘

` a.

Let T 1 : E3 Ñ E3 be the linear transformation induced by the 3ˆ 3 block matrix

»

—

–

T 0

0 1

fi

ffi

fl

and let a1 “ xa, e1y e1 ` xa, e2y e2 where e1 and e2 are two of the standard basis vectors of

E3. Then, in the x1x2-plane of E3,

E “ T 1
´

B3
ro, 1s X

`

E2
ˆ t0u

˘

¯

` a1.
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It follows from (ii) of Properties 3.3.2 that detpT q ‰ 0 since T is invertible. This together

with (iv) of Properties 3.3.2 imply that det pT 1q “ detpT q detp1q “ detpT q “‰ 0. Therefore,

the linear transformation T 1 is also invertible. It follows from (xi) of Properties 2.3.1 that

pT 1q
´1
“

»

—

–

T´1 0

0 1

fi

ffi

fl

.

Apply the linear transformation

T ‹ “

»

—

–

1
2
T´1 0

0 1

fi

ffi

fl

to K.

It will be shown that the convex body T ‹pKq is affine plane symmetric about the x1x2-

plane. Let t1, t2 P E2 denote the rows of the 2 ˆ 2 matrix T´1. Then, for some arbitrarily

chosen k P K,

T ‹pkq “

C

1

2

»

—

–

t1

0

fi

ffi

fl

,k

G

e1 `

C

1

2

»

—

–

t2

0

fi

ffi

fl

,k

G

e2 `

C

»

—

–

o

1

fi

ffi

fl

,k

G

e3.

Since K is affine plane symmetric about the x1x2-plane, by assumption, it follows that there

exists k1 P K such that 1
2
pk` k1q P B and k1 P tk` λe3 | λ P Ru. Therefore,

1

2

´

T ‹pkq ` T ‹pk1q
¯

“
1

2

¨

˚

˝

C

1

2

»

—

–

t1

0

fi

ffi

fl

,k

G

e1 `

C

1

2

»

—

–

t2

0

fi

ffi

fl

,k

G

e2 `

C

»

—

–

o

1

fi

ffi

fl

,k

G

e3

`

C

1

2

»

—

–

t1

0

fi

ffi

fl

,k1

G

e1 `

C

1

2

»

—

–

t2

0

fi

ffi

fl

,k1

G

e2 `

C

»

—

–

o

1

fi

ffi

fl

,k1

G

e3

˛

‹

‚

“

C

1

2

»

—

–

t1

0

fi

ffi

fl

,
1

2
pk` k1q

G

e1 `

C

1

2

»

—

–

t2

0

fi

ffi

fl

,
1

2
pk` k1q

G

e2

`

C

1

2

»

—

–

o

1

fi

ffi

fl

,
1

2
pk` k1q

G

e3

“ T ‹
ˆ

1

2
pk` k1q

˙

P T ‹pBq.
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Moreover, there exists some λ1 P R such that

T ‹ pk1q “ T ‹ pk` λ1e3q

“

C

1

2

»

—

–

t1

0

fi

ffi

fl

,k` λ1e3

G

e1 `

C

1

2

»

—

–

t2

0

fi

ffi

fl

,k` λ1e3

G

e2 `

C

»

—

–

o

1

fi

ffi

fl

,k` λ1e3

G

e3

“ T ‹pkq ` λ1

C

1

2

»

—

–

t1

0

fi

ffi

fl

, e3

G

e1 ` λ
1

C

1

2

»

—

–

t2

0

fi

ffi

fl

, e3

G

e2 ` λ
1

C

»

—

–

o

1

fi

ffi

fl

, e3

G

e3

“ T ‹pkq ` λ1e3 P

!

T ‹pkq ` pλe3 |
pλ P R

)

.

Finally, notice that

T ‹pEq “ T ‹
´

T 1
´

B3
ro, 1s X

`

E2
ˆ t0u

˘

¯

` a1
¯

“ T ‹T 1
´

B3
ro, 1s X

`

E2
ˆ t0u

˘

¯

` T ‹ pa1q

then, by (x) Properties 2.3.1,

“

»

—

–

1
2
In 0

0 1

fi

ffi

fl

´

B3
ro, 1s X

`

E2
ˆ t0u

˘

¯

` T ‹ pa1q ,

where the first term,
»

—

–

1
2
In 0

0 1

fi

ffi

fl

´

B3
ro, 1s X

`

E2
ˆ t0u

˘

¯

,

is a disc of radius 1{2 in the x1x2-plane. Likewise, T ‹p2Eq will be a disc of radius 1 in the

x1x2-plane. Of course, T ‹pEq Ď T ‹pBq Ď T ‹p2Eq as a result of Proposition 2.4.1.

Since the illumination number is invariant under linear transformation and T ‹ preserves

the affine symmetry of K, K is hereinafter assumed to be transformed by T ‹. However, for

convenience, K and all of its subsets will retain their original notation.

Accordingly, suppose that
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(i) relbdpBq contains at least one side and for each side of relbdpBq, there exists

another side parallel to it;

(ii) each side of relbdpBq is non-degenerate;

(iii) there exists a side of relbdpBq whose length is less than 1
2
.

By (iii), relbdpBq contains a side of length less than 1
2
; denote it by ru,vs. Let `1 denote

the supporting line of B at ru,vs and let q “ 1
2
pu` vq. It follows from above that a disc

of diameter 1 with center c is completely contained in B. Then, there exists a closed line

segment parallel to ru,vs in relintpBq whose midpoint is c and whose length is twice longer

than the segment ru,vs; denote it by rn,ms where the points u,v,m,n follow each other

in this order when starting at the point u and travelling counter-clockwise on relbdpBq.

It follows from (ii) that ru,vs is non-degenerate and therefore, contains cliff points. Let

k P ru,vs be chosen so that

›

›k` ´ k´
›

› “ max
 
›

›f` ´ f´
›

› | for all cliff points f P ru,vs
(

.

Let p1 P rn,ms be chosen so that p1 “ n` 2 pk´ uq or equivalently, p1 “ m` 2 pk´ vq. It

follows from Lemma 4.2.1.2 that the directions pp1 ´ kq´ pk` ´ kq and pp1 ´ kq´ pk´ ´ kq

illuminate Wru,vs.

A similar argument to the one used in the proof of Proposition 4.2.2.2.2 can be used to

show that there exists a real number χ1 ą 0 such that the directions pp1 ´ kq´pk` ´ kq and

pp1 ´ kq´pk´ ´ kq illuminate the set W`1XrelbdpBq`B po, χq, which is an open neighbourhood

of Wru,vs on the bdpKq.

Then, by Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists

points a,b P relbdpBqX
`

W`1XrelbdpBq`χ
1B po, 1q

˘

such that the points u,q,v,b and a follow

each other in this order when travelling counter-clockwise on relbdpBq starting at u. More-

over, the line passing through a and b is parallel to the support line `1. By Lemma 4.2.2.1.12,

the directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
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´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate bdpKqz
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

.

This means that the eight directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a, pp1 ´ kq ´ pk` ´ kq,

pp1 ´ kq´pk´ ´ kq,
´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘T e3,

and will illuminate bdpKq.

4.2.5 Fourth Major Case of Theorem 4.1

In this fourth case, suppose that

(i) relbdpBq contains at least one side and for each side of relbdpBq, there exists

another side parallel to it;

(ii) each side of relbdpBq is non-degenerate;

(iii) each side of relbdpBq has length at least 1
2
.

By assumption, relbdpBq contains at least two sides. Let ru,vs be an arbitrary side

of relbdpBq and let rw, zs be the side nearest to ru,vs when travelling counter-clockwise

on relbdpBq. Moreover, let the points u,v,w and z follow each other in this order when

travelling counter-clockwise on relbdpBq, starting at the point u.

4.2.5.1 Suppose that v ‰ w.

Since rw, zs is the side nearest to ru,vs when travelling counter-clockwise on relbdpBq,

rv,wsB does not contain any sides. As mentioned in §4.2.2, smooth points are dense in

relbdpBq. So, let p P pv,wqB be some arbitrary smooth point. Denote the unique supporting

line of B at p by `. The complete antipode Appq is either a single point or a side of B.

If the complete antipode Appq is a side of B, then by condition (i) there exists another

side parallel to it in relbdpBq. It follows from Theorem 2.10.1.2 that the convex body B is

supported by exactly two lines, which means that p must lie on a side in rv,wsB. This is a

contradiction.
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Therefore, Appq is a single point, which we denote by q. If q is a ground point, K can be

illuminated using the same procedure as in §4.2.2.1. If q is a cliff point, the same procedure

as in §4.2.2.2 can be used to illuminate K.

This takes care of the sub-case where between any two sides in relbdpBq, there is an arc

containing no sides.

4.2.5.2 Suppose that v “ w.

It follows that relbdpBq is composed of only sides.

Lemma 4.2.5.2.1. B is a polygon.

Proof. Since relbdpBq is made up of sides each of length at least 1
2
, relbdpBq has finitely

many sides. These sides are 1-dimensional polytopes and by definition can be expressed as

the convex hull of finitely many points. This implies B has finitely many extreme points.

Since B is compact and convex, the Krein-Milman Theorem implies that B can be expressed

as the convex hull of its extreme points. Therefore, by definition B is a polytope. In

particular, B is a polygon since dimpBq “ dim
`

affpBq
˘

“ dimpE2 ˆ t0uq “ 2. �

Moreover, B is a 2n-gon where n ě 2, due to supposition (i). Note that all remaining cases

are sub-cases of §4.2.5.2.

4.2.6 First Featured Subcase of Theorem 4.1

Suppose that

(i) relbdpBq contains at least one side and for each side of relbdpBq, there exists

another side parallel to it;

(ii) each side of relbdpBq is non-degenerate;

(iii) each side of relbdpBq has length at least 1
2
; and

(iv) B is a quadrilateral.
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It follows from (i) & (iv) that B must be a parallelogram. Label the vertices of B by vi,

for i P Z4 in a counter-clockwise fashion so that the vertices vi and vi`1 are adjacent. Since

relbdpBq is a simple closed curve, it should be clear that the sides rvi,vi`1s and rvi`2,vi`3s

of relbdpBq are parallel, for any i P Z4. In this case, non-adjacent vertices are called opposite

vertices.

4.2.6.1 Suppose all the vertices of B are cliff points.

Recall that T “ max t}k` ´ k´} | k P Ku, where k` is the endpoint of the non-degenerate

line segment Prpkq XK lying in H`̀̀ and k´ is the other endpoint of that line segment lying

in H´́́. Then, the eight vectors pvi ´ vi`2q ˘ T e3, pvi`1 ´ vi`3q ˘ T e3, pvi`2 ´ viq ˘ T e3

and pvi`3 ´ vi`1q ˘ T e3 illuminate bdpKq.

4.2.6.2 Suppose that one vertex of B is a ground point and that the other three

vertices of B are cliff points.

Let q denote the vertex of B which is a ground point and denote its opposite vertex by p.

Let `1 be a supporting line of B at q such that `1 does not support any sides of B. There

exists supporting line of B at p parallel to `1; denote it by `. However, note that ` and `1 are

not unique. A nearly identical proof to the one used in §4.2.2.1 can be used to show that the

seven directions p ´ q, 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 illuminate bdpKq.

4.2.6.3 Suppose two adjacent vertices of B are ground points and that the other

two vertices of B are cliff points.

Then, there exists some i P Z4 such that the vertices vi and vi`1 are ground points. The eight

vectors pvi`2 ´ viq, pvi`3 ´ viq, pvi`3 ´ viq˘T e3, pvi ´ vi`2q˘T e3 and pvi`1 ´ vi`3q˘T e3

illuminate bdpKq.
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4.2.6.4 Suppose two opposite vertices of B are ground points.

Then, there exists some i P Z4 such that the vertices vi and vi`2 are ground points. The

eight vectors vi`2´vi, vi´vi`2, vi`3´vi, vi´vi`3, pvi`3 ´ viq˘T e3 and pvi ´ vi`3q˘T e3

illuminate bdpKq.

4.2.7 Second Featured Subcase of Theorem 4.1

Suppose that

(i) relbdpBq contains at least one side and for each side of relbdpBq, there exists

another side parallel to it;

(ii) each side of relbdpBq is non-degenerate;

(iii) each side of relbdpBq has length at least 1
2
; and

(iv) B is a 2n-gon, for any n ě 4.

4.2.7.1 Suppose that two consecutive vertices of B are cliff points.

Let u and v denote two consecutive vertices ofB which are cliff points. Denote the supporting

line of B at the side ru,vs by `1 and let rw, zs be the side parallel to ru,vs where the points

u,v,w and z follow each other in this order when travelling counter-clockwise on relbdpBq

and starting at the point u. Let q “ 1
2
pu` vq and denote the supporting line of B at rw, zs

parallel to `1 by `. Moreover, let the supporting lines of the sides adjacent to ru,vs by `:

and `;. The lines `: and `; are not parallel; denote their intersection point by m and notice

that m R B. Then, there exists χ1 ą 0 such that the directions pq´mq ˘ T e3 illuminate

the open neighbourhood W`1XrelbdpBq ` χ
1B po, 1q on the bdpKq.

By Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists points

a,b P relbdpBq X
`

W`1XrelbdpBq`χ
1B po, 1q

˘

such that the points u,q,v,b,w, z and a follow

each other in this order when travelling counter-clockwise on relbdpBq starting at u. More-

over, the line passing through a and b is parallel to the support line `1. By Lemma 4.2.2.1.12,
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the directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3 and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate bdpKqz
`

W`1XrelbdpBq ` χ
1B po, 1q

˘

.

This means that the eight directions pq´mq ˘ T e3, 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3,
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 illuminate bdpKq.

4.2.7.2 Suppose there exists a pair of parallel sides ru,vs and rw, zs of relbdpBq,

where the vertices u, v, w and z follow each other in this order when

starting at the vertex u and moving counter-clockwise on the relbdpBq,

such that either u and w are ground points or v and z are ground points.

Suppose without loss of generality that the vertices u and w are ground points. Let ` and

`1 be the supporting lines of B chosen so that ` X B “ tuu and `1 X B “ twu. Moreover,

suppose that ` “
!

u` λrd | λ P R
)

. Then, the eight directions ˘rd, rd ˘ T e3, ´rd ˘ T e3,

w ´ u and u´w illuminate bdpKq.

4.2.7.3 Suppose that vertices of relbdpBq alternate between cliff and ground

points.

Note that this case is distinct from §4.2.7.2, only if n in (iv) is odd. Namely, §4.2.7.2 does

not include this case if B is a decagon, or if B a 14-gon, etcetera.

4.2.8 Third Featured Subcase of Theorem 4.1

Suppose that

(i) relbdpBq contains at least one side and for each side of relbdpBq, there exists

another side parallel to it;

(ii) each side of relbdpBq is non-degenerate;

(iii) each side of relbdpBq has length at least 1
2
; and
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(iv) B is a hexagon.

4.2.8.1 Suppose that two consecutive vertices of B are cliff points.

In this case, K can be illuminated using the exact same procedure as in §4.2.7.1

4.2.8.2 Suppose there exists a pair of parallel sides ru,vs and rw, zs of relbdpBq,

where the vertices u, v, w and z follow each other in this order when

starting at the vertex u and moving counter-clockwise on the relbdpBq,

such that either u and w are ground points or v and z are ground points.

In this case, K can be illuminated using the exact same procedure as in §4.2.7.2.

4.2.8.3 Suppose that vertices of relbdpBq alternate between cliff and ground

points.

Let H0 be a regular hexagon. Label its vertices by vi for i P Z6 in a counter- clockwise

fashion such that vi and vi`1 are consecutive vertices. Choose one pair of parallel edges

from H0, say rv0,v1s and rv3,v4s. Let H be the hexagon obtained from taking the convex

hull of the point set
 

v1,v2,v3,v0`λ pv0 ´ v1q ,v4`λ pv0 ´ v1q ,v5`λ pv0 ´ v1q
(

, for some

scalar λ ě 0. Notice that the length of exactly one pair of parallel sides from the hexagon

H0 are scaled by λ ě 0 and the rest of the sides have the same length.

Case 1: Suppose that B is not an affine image of H. The following observation plays

an important role in the proof of Lemma 4.2.8.3.2.

Proposition 4.2.8.3.1. Let H be a convex hexagon in E2 ˆ tou with the property that for

each of its sides, it has another side parallel to it. Then, there exists two triangles T1 and

T2 such that H “ T1 X T2 where T2 “ λT1 ` t for some λ ă 0 and vector t P E3.

Proof. Let the sides of H be labelled by Si, where i P Z6, so that the sides Si and Si`1 are

adjacent. Let the vertices of H be labelled by vi, where i P Z6, such that vi and vi`1 are

consecutive vertices and Si “ rvi,vi`1s.
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Claim: The sides Si and Si`3 are parallel: adjacent sides are not parallel and there does

not exist any i P Z6 such that the sides Si and Si`2 are parallel.

Suppose for a contradiction that there exists a pair of adjacent sides Si and Si`1 that

are parallel. This means that there exists ξ P R such that vi`1 ´ vi “ ξ pvi`2 ´ vi`1q. Both

sides share the vertex vi`1. Let `i and `i`1 denote the supporting lines of H at Si and Si`1,

respectively. Notice that

`i “ tvi`1 ` λ pvi`1 ´ viq | λ P Ru

“ tvi`1 ` λξ pvi`2 ´ vi`1q | λξ P Ru “ `i`1.

Since the supporting lines `i and `i`1 are not distinct, this means that either Si “ Si`1 or

Si Y Si`1 is a side of H. In either case, this would imply that H has only five sides, which

is a contradiction.

Suppose for a contradiction that there exists i P Z6 such that Si and Si`2 are parallel.

Let `i and `i`2 denote the supporting lines of H through the sides Si and Si`2, respectively.

Then, `i and `i`2 are parallel. It follows from Theorem 2.10.1.2 that no other supporting line

of H is parallel to `i and `i`2. Therefore, one of the sides Si`3, Si`4 or Si`5 is parallel to Si`1,

since H has the property that for each of its sides, there exists another side of H parallel

to it. Moreover, the remaining two sides of H must be parallel to each other. Therefore, if

Si`3 were parallel to Si`1, the sides Si`4 and Si`5 would have to be parallel to each other.

However, it was shown above that adjacent sides cannot be parallel. So, this case cannot

occur. Likewise, if Si`5 were parallel to Si`1, then the adjacent sides Si`3 and Si`4 would

have to be parallel to each other, which is not possible.

If the side Si`4 is parallel to Si`1, then the sides Si`3 and Si`5 must be parallel to each

other. This means that there exists some ξ1 P R such that and vi`3 ´ vi`4 “ ξ1 pvi`5 ´ viq.

It follows from Theorem 2.10.1.3 that H must lie between its supporting lines `i and `i`2.

The vertices vi`1 and vi`2 of the side Si`1 lie on `i and `i`2, respectively. Also, the vertices

vi and vi`3 lie on the lines `i and `i`2; therefore, the vertices vi`4 and vi`5 must lie strictly

between the supporting lines `i and `i`2, otherwise H would be a quadrilateral. This means
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that there exists 0 ă ξ̃ ă 1 such that vi`5´vi`4 “ ξ̃ pvi`1 ´ vi`2q. Therefore, the supporting

line of B at Si`3 is of the form

`i`3 “ tvi`4 ` λ
1ξ1 pvi ´ vi`5q | λ

1ξ1 P Ru

“

!

vi ` ξ̃ pvi`2 ´ vi`1q ` p1´ λ
1ξ1q pvi`5 ´ viq | 1´ λ1ξ1 P R

)

.

Notice that the point on the supporting line `i`3,

vi`4 `
1

ξ1
ξ1 pvi ´ vi`5q “ vi ` ξ̃ pvi`1 ´ vi`2q ` pvi`5 ´ viq ` pvi ´ vi`5q

“ vi ` ξ̃ pvi`1 ´ vi`2q ,

also belongs to pvi,vi`2q. By the convexity of H and Proposition 2.10.6,

conv tvi,vi`1,vi`2,vi`3u Ď H

and hence, rvi,vi`2s Ď H. The line `i`3 determines two open half-spaces:

``i`3 “

!

z P E3
| z “ vi ` pλ pvi`2 ´ vi`1q ` p1´ λξ

1
q pvi`5 ´ viq , pλ ą ξ̃, 1´ λ1ξ1 P R

)

and

`´i`3 “

!

z P E3
| z “ vi ` pλ pvi`2 ´ vi`1q ` p1´ λξ

1
q pvi`5 ´ viq , pλ ă ξ̃, 1´ λ1ξ1 P R

)

.

Since 0 ă ξ̃ ă 1, the point vi`2 of H lies in the open half-space ``i`3 and the point vi of

H lies in the open half-space `´i`3. This means that `i`3 strictly separates two points of H,

which contradicts that it is a supporting hyperplane of H. Therefore, the sides Si and Si`2

cannot be parallel.

Hence, the sides Si and Si`3 are parallel for any i P Z6.

�

Lemma 4.2.8.3.2. Let B be a hexagon such that

(i) for any side of B, there exists another side of B parallel to it;
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(ii) B is not the affine image of a hexagon obtained by scaling the lengths of exactly

one pair of parallel sides from a regular hexagon by a scalar λ ě 0 while

preserving the other edge lengths.

Then, relintpBq contains a line segment rn,ms such that m ´ n “ 2 pv ´ uq, for some side

ru,vs Ď relbdpBq.

Proof. It follows from Proposition 4.2.8.3.1 that there exist two triangles T1 and T2 such

that B “ T1 X T2 and T2 “ λT1 ` t for some λ ă 0 and t P En. If the triangles T1 and

T2 are not regular, apply an affine transformation to K so that the triangles T1 and T2

are regular. Denote the center of T1 by z and its vertices by a1,b1 and c1 so that they

follow each other in this order when travelling counter-clockwise on the relative boundary

of T1. Without loss of generality suppose that T2 “ λT1 ` t, for some ´1 ď λ ď 0 and

label its vertices by a2,b2 and c2 so that a2 “ λa1 ` t, b2 “ λb1 ` t and c2 “ λc1 ` t.

The triangle T0 “ ´T ` 2z has the same center as T1; denote its vertices by a0,b0 and

c0 so that a0 “ ´a1 ` 2z, b0 “ ´b1 ` 2z and c0 “ ´c1 ` 2z. Note that T2 cannot

have the same center as T1 and T0, otherwise the hexagon B “ T1 X T2 would be regular

and this would violate condition (ii) of Lemma 4.2.8.3.2. In particular, this means that

T2 Ę T0. One of the sides of T2 intersects the regular hexagon T1 X T0. Suppose without

loss of generality that the side ra2,b2s X pT1 X T0q ‰ H. The line ta2 ` µ pb2 ´ a2q | µ P Ru

intersects the line segments ra0,b1s and rb0, a1s of the parallelogram conv ta1,b1, a0,b0u;

denote the points of intersection by a1 and b1, respectively. Suppose without loss of generality

that }a2 ´ z} ď }b2 ´ z}.
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Figure 4.12

Observe that a2 P conv ta1,b1, a0,b0u. Let txu “ rb0, a0s X rc1,b2s. Then, a lies in the

triangle conv tx, a0,b1u. Let the triangle T 1 with vertices a1,b1 and c1 denote the translate

of T0 by a1 ´ a0. Label the intersections of various line segments in the following way:

tuu “ rb1, c1s X ra
1,b1s ; twu “ rb1, c1s X ra0, c0s ; tvu “ rb1, c1s X ra2, c2s ;

tsu “ rb1, c1s X ra
1, c1s ; tru “ ra0, c0s X ra

1,b1s ; t pmu “ ra1,b1s X ra0, c0s ;

tmu “ ra1,b1s X ra2, c2s ; tpnu “ ra1, c1s X ra0,b0s ; tn2u “ rp2,q2s X ra
1,b1s .

Let n P ra2,b2s be chosen so that the chord rn,ms of B “ T1 X T2 is parallel to its side

ru,vs. The chord rn,ms is the longest chord of B. Denote }x´u} by 2ϕ ă }x´b1}. Notice

that }w ´ s} “ ϕ. Therefore, 2 “
} pm´ pn}

}w ´ x}
“
} pm´ n2} ` }n2 ´ pn}

}w ´ x}
“
}m´ n} ` 2ϕ

ϕ` }s´ uu
. This
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implies that m´n “ 2 ps´ uq. Also, }s´u} ą }v´u}. This means that m´n ą 2 pv ´ uq.

Finally, pn,mq Ď intpKq.

�

Recall that ru,vs is non-degenerate and in fact, either u or v is a cliff point. Let k P ru,vs

be chosen so that

›

›k` ´ k´
›

› “ max
 
›

›f` ´ f´
›

› | for all cliff points f P ru,vs
(

.

Let p1 P rm,ns be chosen so that p1 ´ n “ 2 pk´ uq and m ´ p1 “ 2 pv ´ kq. Then, by

Lemma 4.2.1.2, the directions pp1 ´ kq´pk` ´ kq and pp1 ´ kq´pk´ ´ kq illuminate Wru,vs.

By Proposition 4.2.2.2.2, there exists a real number χ1 ą 0 such that the directions

pp1 ´ kq´ pk` ´ kq and pp1 ´ kq´ pk´ ´ kq illuminate an open neighbourhood of Wru,vs on

the boundary of K, Wru,vs ` χ
1B po, 1q.

It follows from Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9 that

there exists points a and b in this open neighbourhood such that the line between them

is parallel to the supporting line at the side ru,vs. Let q “ 1
2
pu` vq. Then, by Lemma

4.2.2.1.12, the six directions 1
2
pq` aq ´ b, 1

2
pq` bq ´ a,

´

1´ 2ξ
1`ξ

¯

`

1
2
pq` aq ´ b

˘

˘ T e3,

and
´

1´ 2p1´ξq
2´ξ

¯

`

1
2
pq` bq ´ a

˘

˘ T e3 will illuminate bdpKqz
`

Wru,vs ` χ
1B po, 1q

˘

.

Case 2: Suppose that B is an affine image of H.

Then, there exists an affine transformation T : En Ñ En such that B “ T pHq. It follows

from (vi),(v) and (vi) of Properties 2.4.8 that B is a hexagon with the property that both

sides from a pair of parallel sides have the same length. Label the vertices of B by bi for

i P Z6 in a counter-clockwise fashion such that bi and bi`1 are consecutive vertices. Choose

one pair of parallel sides of B satisfying min t}bi ´ bi`1} | i P Z6u and denote them by ru,vs

and rn,ms where v,u,n and m follow each other in this order when starting at v and

travelling counter-clockwise on relbdpBq. Since the vertices of relbdpBq alternate between

ground and cliff points, one may suppose without loss of generality that u and n are cliff
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points while v and m are ground points. Let k P rn,mq be the cliff point chosen so that

›

›k` ´ k´
›

› “ max
 
›

›f` ´ f´
›

› | for all cliff points f P rn,mq
(

.

It follows that there exists some 0 ď ϑ ă 1 such that k “ ϑm` p1´ ϑqn. Let z P ru,vq be

chosen so that z “ ϑv ` p1´ ϑqu.

Denote the supporting line of B at the side ru,vs by `: and denote the supporting line

of B at the side rn,ms, which parallel to it, by `;. It follows from Theorem 2.10.1.3 that B

lies between `: and `;. In particular, the other two vertices of B must lie strictly between `:

and `;, otherwise B would be a quadrilateral.

Figure 4.13: One of the remaining two vertices of B must lie in the region R1 and the other

must lie in the region R2.

By Proposition 2.10.6, conv tu,v,n,mu Ď B. The other two vertices of B cannot lie in or on

conv tu,v,n,mu, otherwise B could not be a convex hexagon. Moreover, it follows from the

Claim in Proposition 4.2.8.3.1 that neither the closed segment rm,vs nor the closed segment

ru,ns can be sides of B; namely, one of the remaining two vertices must lie to the right of the

line segment ru,ns when travelling counter-clockwise on relbdpBq and the other vertex must
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lie to the right of the line segment rm,vs when travelling counter-clockwise on relbdpBq.

This together with Lemma 2.10.13 implies that pm,vq Ď relintpBq and pu,nq Ď relintpBq.

Denote the vertex of B between u and n by d and denote the vertex B between m and

v by c. Then, there exists κ ą 0 and 0 ă ψ ă 1 such that

c “ v ` κ pv ´ uq ` ψ pm´ vq .

Since all parallel sides have the same length, it follows that m´n “ v´u and c´v “ n´d.

Therefore, m´ v “ n´ u. Also,

d “ n` pv ´ cq

“ u` pn´ uq ` κ pu´ vq ` ψ pv ´mq

“ u` p1´ ψq pn´ uq ` κ pu´ vq .

The point k`
p1´ ϑq p1´ ψq

κ
pk´ zq is where the line passing through the points k and z,

tz` λ pk´ zq | λ P Ru, intersects the line passing through the points m and c. To see this,

first notice that

k´ z “ n` ϑ pm´ nq ´ n` ϑ pu´ vq

“ n´ u` ϑ pv ´ uq ` ϑ pu´ vq “ n´ u “ m´ v.

Then, observe that c “ m ` κ pv ´ uq ` p1´ ψq pm´ vq. Re-arrange the equation to get

that

m´ v “
1

1´ ψ
pm´ cq `

κ

1´ ψ
pv ´ uq

“
1

1´ ψ
pm´ cq `

κ

1´ ψ
pm´ nq . (4.33)

Finally, observe that

k`
p1´ ϑq p1´ ψq

κ
pk´ zq (4.34)

“ m` p1´ ϑq pn´mq `
p1´ ϑq p1´ ψq

κ

ˆ

1

1´ ψ
pm´ cq `

κ

1´ ψ
pm´ nq

˙
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“ m` p1´ ϑq pn´mq ` p1´ ϑq pm´ nq `
1´ ϑ

κ
pm´ cq

“ m`
1´ ϑ

κ
pm´ cq P tc` λ1 pm´ cq | λ1 P Ru . (4.35)

Claim 2: For any ν ą
p1´ ϑq p1´ ψq

κ
, the ray through the point k ` ν pk´ zq with

direction m ` ν 1 pc´mq ´
`

k ` ν pk´ zq
˘

intersects relintpBq for 0 ď ν 1 ă 1 and only

intersects B at the boundary point c for ν 1 “ 1.

Let 0 ď ν 1 ă 1 be arbitrarily chosen. Since pm,vq Ď relintpBq and 0 ă ψ ă 1, it follows that

the point v ` ψ pm´ vq P relintpBq. Since c P relbdpBq it follows from Theorem 2.10.10

that pc,v ` ψ pm´ vqq Ď relintpBq. Observe that

k` ν pk´ zq `

ˆ

1`
p1´ ψq p1´ ν 1q

ν

˙

´

m` ν 1 pc´mq ´
`

k` ν pk´ zq
˘

¯

“ k` ν pk´ zq `

ˆ

1`
p1´ ψq p1´ ν 1q

ν

˙

`

p1´ ϑq pm´ nq ` ν 1 pc´mq ` ν pz´ kq
˘

“ m`

ˆ

p1´ ψq p1´ ν 1q p1´ ϑq

ν

˙

pm´ nq ` p1´ ψq p1´ ν 1q pz´ kq ` ν 1 p1´ ψq pv ´mq

` ν 1κ pm´ nq

“ m` p1´ ψq pv ´mq `

ˆ

p1´ ψq p1´ ν 1q p1´ ϑq

ν
` ν 1κ

˙

pm´ nq

“ c` p1´ ν 1q

ˆ

κ´
p1´ ψq p1´ ν 1q p1´ ϑq

ν

˙

pm´ nq

“ c` p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

pv ` ψ pm´ vq ´ cq

“

ˆ

1´ p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙˙

c

` p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

pv ` ψ pm´ vqq .

To see that the point, above, on the ray through k`ν pk´ zq with direction m`ν 1 pc´mq´
`

k` ν pk´ zq
˘

belongs to the open line segment pc,v ` ψ pm´ vqq Ď relintpBq, verify that

0 ă p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

ă 1.

Since κ ą 0 and ν ą
p1´ ϑq p1´ ψq

κ
, it follows that κν ą p1´ ϑq p1´ ψq. It follows from
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0 ă ψ ă 1 and 0 ď ϑ ă 1 that

0 ă 1´ ψ ă 1 and 0 ă 1´ ϑ ď 1. (4.36)

Since 0 ď ν 1 ă 1, it follows that 0 ă 1´ ν ď 1. This together with (4.36) and Corollary A.2

implies that

κν ą p1´ ψq p1´ ϑq ą p1´ ψq p1´ ν 1q p1´ ϑq ą 0. (4.37)

This means that

κν ´ p1´ ψq p1´ ν 1q p1´ ϑq ą 0. (4.38)

Notice that

κν

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

“ κν ´ p1´ ψq p1´ ν 1q p1´ ϑq ą 0.

In particular, this implies that 1 ´
p1´ ψq p1´ ν 1q p1´ ϑq

κν
ą 0, since κν ą 0, by (4.37).

Therefore,

p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

ą 0.

Also, notice that

κν

ˆ

1´

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙˙

“ p1´ ψq p1´ ν 1q p1´ ϑq ą 0.

This means that
ˆ

1´

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙˙

ą 0,

since κν ą 0. Re-arrange the above inequality to get that 1 ´
p1´ ψq p1´ ν 1q p1´ ϑq

κν
ă 1.

This together with Corollary A.2 implies that

p1´ ν 1q

ˆ

1´
p1´ ψq p1´ ν 1q p1´ ϑq

κν

˙

ă p1´ ν 1q ď 1.

Hence, the ray through the point k`ν pk´ zq with direction m`ν 1 pc´mq´
`

k`ν pk´ zq
˘

intersects relintpBq for 0 ď ν 1 ă 1.

Let ν 1 “ 1.
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Sub-case (a): Suppose that 1 ą
p1´ ϑq p1´ ψq

κ
.

Then, let p2 “ k ` pk´ zq and let p1 “ z. Choose d1 “ pz´ kq ` pk´ k`q and d2 “

pz´ kq ` pk´ k´q. Notice that p2 R B and k “ 1
2
pp1 ` p2q.

Let x P Wrn,mq be arbitrarily chosen. It follows that Pr pxq P rn,mq and therefore, there

exists 0 ă f ď 1 such that Pr pxq “ fn ` p1´ fqm. If x P
`

Wrn,mq

˘

`̀̀
z rn,mq, then there

exists 0 ă Ω ď 1 such that x´Pr pxq “ Ω pk` ´ kq. This means that k`´k “
1

Ω
px´ Pr pxqq

where
1

Ω
ě 1. The ray passing through x with direction d1 contains the point

x` Ω pd1q “ x` Ω
“

pz´ kq `
`

k´ k`
˘‰

“ x` Ω pv ´mq ´ px´ Pr pxqq

“ fn` p1´ fqm` Ω pv ´mq .

The points v`p1´ Ωq pm´ vq P pm,vq and u`p1´ Ωq pn´ uq P pu,nq belong to relintpBq

since pm,vq , pu,nq Ď relintpBq and 0 ă 1 ´ Ω ă 1. It follows from Corollary 2.10.11 that
`

v ` p1´ Ωq pm´ vq ,u ` p1´ Ωq pn´ uq
˘

Ď relintpBq and observe that it contains the

point

p1´ fq
`

v ` p1´ Ωq pm´ vq
˘

` f
`

u` p1´ Ωq pn´ uq
˘

“ v ` f pu´ vq ` p1´ Ωq pm´ vq ´ f p1´ Ωq pm´ vq ` f p1´ Ωq pn´ uq

“ m` pv ´mq ` p1´ Ωq pm´ vq ` f pn´mq

“ fn` p1´ fqm` Ω pv ´mq .

Thus, x` Ω pd1q P relintpBq Ď intpKq. This means that the direction d1 illuminates x.

If x P
`

Wrn,mq

˘

´́́
z rn,mq, then a nearly identical proof can be used to show that the direction

d2 illuminates the point x.

If x P rn,mq, then x “ Pr pxq “ fn`p1´ fqm, for some 0 ă f ď 1. By convexity, x must

be a cliff point. Let

 

x´
(

“ tx´ λe3 | λ P Ru X
` “

k´,m
‰

Y
“

n´,k´
‰ ˘

.
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Since K is affine plane symmetric, k` ´ k “ k ´ k´. So, there exists 0 ă Ω1 ď 1 such that

x´ x´ “ Ω1 px` ´ kq. This means that k` ´ k “
1

Ω1
px´ x1q where

1

Ω1
ě 1. Observe that

x`
1´ ψ

1` 1´ψ
Ω1

d1 “ x`
1´ ψ

1` 1´ψ
Ω1

´

pz´ kq `
`

k´ k`
˘

¯

“ x`
1´ ψ

1` 1´ψ
Ω1

pv ´mq ´
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸

px´ x1q

“

˜

1´
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸¸

x`
1´ ψ

1` 1´ψ
Ω1

pv ´mq `
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸

x´

“

˜

1´
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸¸

`

x` p1´ ψq pv ´mq
˘

`
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸

x´

“

˜

1´
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸¸

´

p1´ fq
`

v ` ψ pm´ vq
˘

` f
`

u` ψ pn´ uq
˘

¯

`
1

Ω1

˜

1´ ψ

1` 1´ψ
Ω1

¸

x´.

Sub-case (b): Suppose that 1 ď
p1´ ϑq p1´ ψq

κ
.

Then, choose some ν ą
p1´ ϑq p1´ ψq

κ
. Let p2 be the point k`ν pk´ zq on the line through

the points k and z. Also, let p1 be the point z`p1´ νq pk´ zq on the line through the points

k and z. Choose d1 “ pp1 ´ kq ` pk´ k`q “ ν pz´ kq ` pk´ k`q and d2 “ pp1 ´ kq `

pk´ k´q “ ν pz´ kq ` pk´ k´q. Notice that 1{2 pp1 ` p2q “
1{2
`

z ` p1´ νq pk´ zq ` k `

ν pk´ zq
˘

“ k.
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Chapter 5

Conclusion

B.V. Dekster proved that illumination conjecture holds for 3-dimensional convex bodies with

affine plane symmetry [21]. His proof cleverly combined theory from elementary geometry

with non-trivial results from convex analysis. This thesis re-examined his work and used it

as a prototype for a more detailed proof of some cases, while at the same time correcting

some minor flaws in the original proof.
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Appendix A

Elementary Number Theory

Proposition A.1. Let λ and µ be real numbers such that 1 ě λ ě 0 and µ ě 0. Then,

λµ ď µ.

Proof. Suppose 0 ď λ ď 1. It follows that 1 ´ λ ě 0. Also, suppose µ ě 0. The product

of two non-negative numbers is non-negative. Therefore, it follows that µ p1´ λq ě 0. Re-

arrange this inequality to get λµ ď µ. �

Corollary A.2. Let λ and µ be real numbers such that 0 ď λ, µ ď 1. Then, λµ ď µ and

λµ ď λ.

Proposition A.3. Let λ1, λ2 and λ3 be real numbers such that λ3 ě λ1 and λ2, λ3 ą 0.

Then,

λ1 ` λ2

λ3 ` λ2

ě
λ1

λ3

.

Proof. Suppose λ3 ě λ1 and λ3 ą 0. Then, λ3 ´ λ1 ě 0. Recall that the product of two

non-negative numbers is a non-negative number. Therefore, λ2
3 ´ λ3λ1 “ λ3 pλ3 ´ λ1q ě 0.

Observe that

1

λ3

`

λ2
3 ´ λ3λ1

˘

“
λ2

3

λ3

´
λ3λ1

λ3

“ λ3 ´ λ1 ě 0.

Also, recall that a non-negative number can either be written as the product of two non-

negative numbers or the product of two non-positive numbers. It follows that
1

λ3

ě 0.

Furthermore, suppose λ2 ą 0. It follows that λ3λ2´λ1λ2 “ λ2 pλ3 ´ λ1q ě 0 and λ3`λ2 ą

0. Also, it follows that λ3` λ2 ě λ1` λ2. This inequality can be re-arranged as pλ3 ` λ2q ´

pλ1 ` λ2q ě 0. Use the property of the product of non-negative numbers mentioned above to

get pλ3 ` λ2q
2
´ pλ3 ` λ2q pλ1 ` λ2q “ pλ3 ` λ2q ppλ3 ` λ2q ´ pλ1 ` λ2qq ě 0. Observe that

1

λ3 ` λ2

`

pλ3 ` λ2q
2
´ pλ3 ` λ2q pλ1 ` λ2q

˘

“ pλ3 ` λ2q ´ pλ1 ` λ2q ě 0.
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It follows that
1

λ3 ` λ2

ě 0. Thus,

1

λ3 pλ3 ` λ2q
“

1

λ3

¨
1

λ3 ` λ2

ě 0.

Hence,

λ1 ` λ2

λ3 ` λ2

´
λ1

λ3

“
λ3 pλ1 ` λ2q ´ λ1 pλ3 ` λ2q

λ3 pλ3 ` λ2q
“ pλ3λ2q ¨

1

λ3 pλ3 ` λ2q
ě 0.

Re-arrange this inequality to get

λ1 ` λ2

λ3 ` λ2

ě
λ1

λ3

.

�
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