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Abstract

In 1960, H. Hadwiger [27] and V. Boltyanski [15] independently posed equivalent versions
of the same question: is it possible to illuminate any n-dimensional convex body by 2"
light sources? The affirmative answer to this question is called the Boltyanski-Hadwiger
[Nlumination Conjecture. It is one of the best known open problems in Discrete Geometry and
derives some of this prominence from its close relationship to the highly studied art gallery
problems [44] and from its equivalence to the Levi-Gohberg-Markus Covering Conjecture [14].
In the last fifty-five years, many partial results have been proved. For example, B. V.
Dekster [21] proved that eight directions illuminate three-dimensional convex bodies with
affine plane symmetry. The central feature of this thesis is a rigorous exposition of most
cases from Dekster’s proof. Three non-trivial theorems play a significant role in the proof:
the John-Lowner Theorem, the Blaschke Selection Theorem and Mazur’s Finite Dimensional

Density Theorem. Their proofs form another important part of this work.
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Chapter 1
Introduction

A set is conver if it completely contains the line segment between any two of its points. In
addition to being convex, a convex body is a set which has interior points, includes all of its
boundary points and can be completely contained in some ball. The illumination problem
described by H. Hadwiger in 1960 [27] challenges geometers to find the minimum number of

external light sources required to illuminate the surface of any convex body.

p

b2
C
b3
The light source p illuminates the point b on the The minimum number of light sources needed to
boundary of the triangle but does not illuminate illuminate the triangle is three.
the boundary points a or c.
Figure 1.1

Independently, V. Boltyanski [15] asked an equivalent version of the same question in
an article from 1960; instead of using external light sources for illuminating convex bodies,
he proposed the use of directions. Both speculated that at most 2" external light sources
or directions were needed to illuminate the surface of an n-dimensional convex body. In

the same paper [15], Boltyanski proved that the problem of illuminating convex bodies is



equivalent to an earlier problem posed by I. Gohberg and A. Markus, which asks whether it is
possible to cover every n-dimensional convex body by 2" smaller copies [25]. On a historical
note, F. Levi stated an equivalent version of the covering problem in 1955 and proved it in
the plane [36]. Unaware of Levi’s work, Gohberg and Marcus submitted their article in 1957,
which also included a proof of the covering conjecture in the plane, to Matematicheskoye

Prosveshcheniye [13]; the journal suspended publication at that time and their article was

not published until 1960.

The minimum number of smaller discs required The larger triangle can be covered by three
to cover the larger disc is 3. smaller copies
Figure 1.2

The Boltyanski-Hadwiger illumination problem and the equivalent Levi-Markus-Gohberg
covering problem are still open in dimensions greater than two. A solution to the illumination
conjecture for 3-dimensional convex bodies was announced by Boltyanski [16]; however, the
proposed proof still remains incomplete [10]. Currently, the best general upper bound on
the minimum number of light sources required to illuminate a 3-dimensional convex body,
in the literature, is 16 and is due to I. Papadoperakis [45].

Many results of the illumination and covering conjectures for special kinds of convex



bodies have been established. For example, it is known that d-dimensional convex bodies
whose boundaries consist only of smooth points can be illuminated or covered by d + 1 light
sources or smaller copies, respectively (see [36], [15], [12]). In addition, K. Bezdek proved
the illumination conjecture holds for 3-dimensional convex polyhedra with affine symmetry
[11], M. Lassak proved that the illumination conjecture holds for centrally symmetric 3-
dimensional convex bodies [32] and B.V. Dekster proved the illumination conjecture holds
for 3-dimensional convex bodies with affine plane symmetry [21]. For a more comprehensive
account of the major results known about the illumination and covering conjectures and
their applications, the interested reader can consult the surveys in [10], [18] and [58].

The central focus of this thesis is to provide a rigorous account of B.V. Dekster’s partial
result [21]. Chapter 2 states definitions and basic theorems, which are required in Chapters
3 and 4. The proof of the illumination conjecture for 3-dimensional convex bodies with
affine plane symmetry relies on three non-trivial theorems: the Blaschke Selection Theorem,
Mazur’s Finite Dimensional Density Theorem and the John-Lowner Theorem. These three
theorems are proved in Chapter 3. Finally, Chapter 4 gives a rigorous exposition of Dekster’s

proof [21].



Chapter 2

Preliminaries

2.1 Euclidean n-Space

Let n be some positive integer strictly greater than 1. The set R™ is defined as all ordered
n-tuples of real numbers; namely, R" = {(x1,22,...,2,) | z; € R, 1 <i < n}. An element
(1,22, ...,x,) of R™ is denoted by x and called a vector or point, interchangeably. Vectors
consist of coordinates. Specifically, the real numbers z;, for all 1 < ¢ < n, are the coordinates
of the vector x = (z1,x2,...,2,).

Addition between any two vectors X = (z1,xa,...,2,) and y = (y1,¥2,...,Ys) in R is
defined as follows:

X+y=(T1+y1,T24 Y2y Ty + Yn)-

Likewise, multiplication of any vector x = (x1,%s,...,z,) in E" by a scalar A € R is
defined by
AX = (Ax1, A\Ta, ..., Azy).

Geometrically, two vectors in R™ are said to be parallel if one can be written as a scalar
multiple of the other; in other words, the vectors x,y € R" are parallel if there exists a real
number A such that x = \y. The vectors x and y in R" are said to have the same direction
if there exists a real number A > 0 such that x = \y. The vectors x and y in R" are said to
have opposite directions if there exists a real number A < 0 such that x = \y.

With the operations of vector addition and scalar multiplication defined above, R™ deter-
mines a vector space over the field of real numbers, R. The additive identity in R™, known
as the origin or the zero vector, is denoted by o.

The operations of vector addition and scalar multiplication can be extended to sets, as



follows. Given any two sets A and B in R", the Minkowski sum between these two sets is
defined by
A+B={a+b|aecAandbe B}

The Minkowski sum between a set A and some singleton set {x} is called a translate of A
by x; it is commonly written as x + A. The Minkowski sum, A + B, may also be expressed

as the union of translates

J@+B)=[J(A+Db).

acA beB

Proposition 2.1.1. Let A, B and C be subsets of R™. If A< B, then A+ C < B+ C.

Proof. Suppose A € B. Let x € A 4+ C be arbitrarily chosen. Then, there exists a € A and

c € C such that x = a+ c. However, a€ A € B. Therefore, x =a+ce B+ C. [ |

e O

Figure 2.1: Minkowski Sum of Two 2-simplices

For any scalar A € R and any set A in R™, the set A\A = {\a | a € A} is called a scalar
multiple of A. The set A is said to be homothetic to the set B if there exists some real

number A # 0 and some vector x € R™ such that A = AB + x.

There is another operation between sets, known as the Cartesian product. For any two

sets A and B in R", the Cartesian product of these two sets is defined and denoted by

Ax B={(a,b)|ae Aandbe B},



where (a, b) is an ordered 2n-tuple and A x B € R™*™ = R"*

In addition to the operations of addition and scalar multiplication, there is another opera-
tion between vectors in R” known as the inner product. Given two vectors x = (1, za, ..., x,)
andy = (y1,¥2,...,¥Y) in R”, the inner product is a map which sends the ordered pair (x,y)
in R” x R™ to the real number (x,y) = z1y1 + Z2y2 + . .. + x,y,. Notice that (x,y) = {y,x)
and that (Ax,y) = (x, \y) = X(X,y), for any real number \.

The inner product gives rise to the concept of the length or norm of a vector in R",
sometimes called the Fuclidean norm. The Fuclidean norm is defined to be a map which
sends a vector x in R” to the real number |x| = 1/(x,x). Notice that that |x|| > 0 for all
x # o and ||x| = 0 if and only if x = 0. Also, notice that |Ax|| = |A||x]|, for any real number
A

Vectors in R™ of length one are called unit vectors. The set of all unit vectors in E” is

the n — 1-dimensional sphere:
S ={xeR"||x]| =1}.

The Fuclidean distance between any two vectors x and y in R” is found by taking the
Euclidean norm of the vectors x —y or y — x: namely, it is the real number found by
calculating ||x — y|| = [ly — x||-

Stated below are two well-known inequalities: the Cauchy-Schwarz inequality and the
triangle inequality. Their proofs can be found on p. 3 of [9]. The so-called reverse triangle

inequality is also stated below. Its proof can be found on p. 584 of [24].
Theorem 2.1.2. Let x,y € R" be arbitrarily chosen. Then,

(1) (Cauchy-Schwarz Inequality) | (x,y)| < |x||y]
(i1) (Triangle Inequality) |x +y| < ||x]| + |ly|

(11i) (Reverse Triangle Inequality) ||x| — |yl < |x — ¥



Note that equality holds for the Cauchy-Schwarz inequality if and only if either x = Ay
for some real number A or y = px for some real number p. Equality occurs in the triangle
inequality if and only if either x = Ay for some real number A > 0.

The angle between any non-zero vectors x and y in R™ is the real number 0, which

satisfies

Xy
<0s(6) = Txlly]

in the interval 0 < # < 7. The angle 6 is uniquely determined in this interval. Notice that
the angle between the vectors Ax and py, for any real numbers A, u > 0, is equivalent to the
angle between x and y.

The vector space R™ together with the Euclidean distance is a metric space called the

n-dimensional Fuclidean space and is denoted by E™.

2.2 Linear and Affine sets

A set S in E" is called a linear subspace of E™ if for each pair of vectors x,y € S and for
any scalar A € R, Ax +y € S. Similarly, a set A in E” is said to be affine if for each pair
of vectors x,y € A and for A € R, Ax + (1 — \)y € A. In other words, a set is affine if for
any two vectors in the set, the entire line through the vectors is contained by the set. Affine
sets and linear subspaces of E" relate to each other in the following way; any affine set in E"
containing the origin is a linear subspace of E". Two affine sets A and B in E" are parallel

if one is a translate of the other.

A linear combination of the vectors X1, Xa, ..., Xm in E™ is \1X1 + X\oXg + ... + A\, Xm for
any real numbers Aj, Ao, ..., \,,. If the scalars in the above linear combination satisfy the
further condition that A\ + Ao + ... + A, = 1, then \1x7 + XoXa + ... + \,,,Xm is called an
affine combination of the vectors Xi,Xs, ..., Xy in E”. Given a set A in E", the set of all

affine combinations of the vectors of A is the affine hull of A, denoted by aff(A). The affine



hull, aff(A), can also be described as the intersection of all affine sets in E™ containing A.
It should be noted that the intersection of an arbitrary family of affine sets is an affine set.
Also, recall the following. Given a set S in E™, S is said to be linearly dependent if there
exist distinct vectors X1, Xs, ..., Xy in S and scalars A, Ao, ..., A\, not all zero, such that
A1X1 + AoXo + ...+ ApXm = 0. A set that is not linearly dependent is said to be linearly

independent.

2.2.1 Dimension

Let S be some linear subspace of E™. If the vectors x1,Xa,..., Xy in S are linearly inde-
pendent and if S can be written as the set of all linear combinations of these vectors, then
{x1,X2,...,Xm} is called the linear basis of S. The number of vectors in the linear basis is
the dimension of the linear subspace S, denoted dim(S). The dimension of an affine set A
is the dimension of the linear subspace parallel to it. The dimension of a set B in E" is the

dimension of the smallest affine set containing B, i.e. the aff(B).

2.2.2 Examples of Linear and Affine Sets

Given the terminology developed above, examples of linear and affine sets can now be mean-
ingfully provided.

The empty set ¢J is a —1-dimensional affine set, singleton sets are O-dimensional affine
sets, lines are 1-dimensional affine sets, planes are 2-dimensional affine sets and hyperplanes
are n — l-dimensional affine sets in E™.

The definition of parallel affine set given above does not obviously describe the behaviour
of two parallel lines in a plane but the following theorem does; the proof of the forwards

direction can be found on page 16 of [60] and the backwards direction follows directly from



the definition of affine parallel sets.

Theorem 2.2.2.1. Two distinct lines {1 and {5, in some plane P of E™, do not intersect if

and only if {1 and {5 are parallel.

Likewise, the singleton set {0} is the 0-dimensional linear set, lines passing through the
origin are 1-dimensional linear sets, planes containing the origin are 2-dimensional linear sets

and hyperplanes containing the origin are n — 1-dimensional linear sets.

2.2.3 Hyperplanes, Halfspaces and Slabs

A hyperplane H in E" is defined to be {x € E" | (x,u) = X\, ue 8" !, XA € R}. Note that
the unit vector u is normal to H. Two hyperplanes are parallel if and only if their unit
normal vectors are a scalar multiples.

The hyperplane H divides E™ into two half-spaces. Namely, the set of vectors lying

strictly to one side or the other of H are expressed as
HY ={xeE"| (x,u) >\, ueS" ' \eR}

and

H ={xeE"| (x,u) <) ueS" ! \eR}.

The half-spaces Ht and H~ are open half-spaces determined by H. The closed half-spaces
determined by H are the set of vectors lying on and to one side or the other of H. They
are denoted by and defined as H™ = {x € E" | (x,u) > A\, u € "', X\ € R} and
H ={xeE"| (x,uy <\ ueS" ! \eRj}.

A slab in E™ is the closed connected region bounded by two distinct parallel hyperplanes.
Specifically, the slab between the hyperplanes H; = {x € E" | (x,u) = \;, ue 8" !} and

Hy = {xeE" | (x,u) =Xy, ue S 8" !} for \; < )y, is expressed by

slab[Hy, Ho] = {x e E" | A} <{(x,u) < Xy, ue 8" '}



2.3 Matrices

A rectangular array of real numbers with m rows and n columns is called an m x n matriz
and belongs to E™*". The (i, j)-entry of a real-valued m x n matrix A is is the number in
the i-th row and j-th column of A and denoted by a;;. Two matrices A and B are equal if
they have the same number of rows and columns, and if a;; = b;; for all possible values of ¢
and j.

Let A and B be two matrices with the same number of rows and columns. The sum
A + B is the matrix consisting of the entries a;; + b;; for each 7 and j. If X\ be some real
number and A some matrix, then the matrix AA consists of the entries Aa;; for each i and
J. Let A be an m x n matrix. The n x m matrix whose entries are aj for any 1 < j <n
and 1 < i < m is called the transpose of A and is denoted by A”. A matrix with the same
number of rows as columns is called square. If A is square matrix with the property that
A = AT, then A is called symmetric. A square matrix A is called diagonal if a;; = 0 for all
1 # j. Let A be an m x n matrix and let B be an n x k matrix. Denote the i-th row of A by
a;, = (ail iy .. Clm> and denote the j-column of B by b’ = <bﬂ bjy ... bjn). The

product AB is the m x k matrix whose (i, j)-entry is
/ / / / Ty
<a,~, b]> = aﬂbjl + CLZ‘ijQ + ...+ ambjn = a; bj‘

Note that, in general, AB # BA. The n x n diagonal matrix whose (i, i)-entries are equal to
1, for each 1 < i < n, is called the identity matriz and is denoted by I,,. Let A be an n x n
matrix. If there exists an n x n matrix B such that AB = I,, and BA = I,,, then A is said
to be invertible and B is called the inverse of A; B is often written as A~!.

Below is a collection of several helpful properties of the transpose, matrix multiplication
and matrix inverses. Their proofs can be found on pages 32, 47, 56, 57 and 45 of [43] and

page 468 of [54], respectively.
Properties 2.3.1.

10



(i) Let A be an m x n matriz. Then, (AT)T = A;
(ii) Let A be an m x n matriz. Then I,,A = A = Al,;

(#ii) Let the matrices B and C' have the same number of rows and columns. Then,
A(B+C)=AB+ AC and (B+C)A = BA + CA, if the matriz A is sized

so that the products are defined;

(iv) Let A and B be matrices whose product is defined and let A € R. Then,
A(AB) = (M) B = A(\B).

(v) Let A and B be two compatible matrices. Then, (AB)" = BTAT;
(vi) If A is an invertible n x n matriz, then (A*1)71 = A;
(vii) Let A and B be n x n invertible matrices. Then, (AB)™' = B™1A™!;

(viii) Let A be an invertible n x n matriz and let X be a non-zero scalar. Then,

1
M) =AY
( ) )\ J

(ix) Let A be an invertible matriz. Then, (AT)fl =AY,

(r) Let Ay and Ay be n x n matrices, let By and By be m x m matrices, and let

- A Xy
0 B
and ~ _
CZ _ AQ X2
0 By

be block matrices where 0 denotes an (m —n) x (m —n) matriz whose entries

are all zeros. Then,

0102 _ A1A2 AlXQ + XlBQ

0 BBy

11



(zi) Let A and B be square matrices and let

A X
0 B
be a block matrix where 0 is a matriz whose entries are all zeros. Then, C' is

invertible if and only if A and B are invertible and
At —ATIX B

c =
0 B

2.4 Linear and Affine Transformations

A function T : E" — E™ is a rule that assigns to every vector x € E™ a uniquely determined
vector T'(x) in E™. Below, a basic but useful fact about functions is stated; see page A58

of [22] for its proof.
Proposition 2.4.1. Let T : X — Y be a function and let A< B < X. Then, T(A) < T(B).

Given the functions S, 7T : E" — E™ and X € R, define the sum S + T, the scalar product

AT and composition S o T by
(S+T)(x)=S(x)+T(x), (AT)(x)=MNT(x)
and
(SoT)(x) =5(T'(x),

for all x € E". The function ig» : E* — E" defined by ig» (x) = x, for all x € E" is called the
identity function. A function T : E" — E™ is said to be tnvertible if there exists a functions
T',7* : E™ — E" such that T o T" = igm and T* o T = ig~». The proposition below specifies
the relationship between the functions 7" and T*; its proof can be found on page 22 of [57].
Proposition 2.4.2. Let T : E" — E™ be a function such that T oT' = igm and T* oT = ign

for some functions T',T* : E™ — E". Then, T' = T* and the function T, called the inverse

of T, is unique.

12



Let T : E® — E™ be a function with the property that for each element y € E™ there
exists a unique element x € E" such that y = T (x). Then, the function T is called a
bijection. The following lemma connects the concepts of invertible functions to bijections;

its proof can be found on page 128 of [31].
Lemma 2.4.3. A function T : E® — E™ is a bijection if and only if T is invertible.

If a function 7" : E® — E™ satisfies the conditions
Tx+y)=T(x)+T(y) and T (Mx)= AT (x)

for all x,y €e E® and A € R, then T is called a linear transformation. The following theorem

relates linear transformations to matrices. Its proof can be found on pages 75 and 76 of [43].

Theorem 2.4.4. Let T : E* — E™ be a transformation. If T is a linear transformation,
then T is induced by a unique matriz, A = [T(e1) T(esy) ... T(en)] ; namely, T (x) = Ax

for all x € E™. If T is induced by an m x n matriz A, then T is a linear transformation.

The theorem below provides a criterion for determining whether a linear function is invertible.

It is proved on page 79 of [43].

Theorem 2.4.5. Let A be an n xn matriz which induces the linear transformation T : E" —

E™. Then, T is invertible if and only if the matriz A is invertible.

An important fact about the inverse of a linear transformation is exhibited in the next

lemma, which is proved on page 128 of [31].

Lemma 2.4.6. If T : E® — E" is an invertible linear transformation, then its inverse T}

1s also a linear transformation.

In comparison, a transformation is called affine if it satisfies the property

T(Ax + py) = \T'(x) + uT'(y),

13



for any x,y € E" and any A, u € R such that A+ 1 = 1. Notice that every linear transforma-
tion is an affine transformation. However, the converse is not true: an affine transformation
T : E* — E™ is linear if and only if T(0) = o (see Theorem 1.5.1 in [60]). The following
theorem allows us to more precisely understand the relationship between linear and affine
transformations. The first half of its proof can be found on p. 23 of [60]. The latter half is

not difficult to prove and it can be done with the help of (i7i) and (iv) from Properties 2.3.1.
Theorem 2.4.7. Let T : E" — E™ be a transformation. If T is an affine transformation,
then T is induced by the unique m x n matrix,

A=|T(e)) —T(o) T(ey) —T(0) ... T(e,)—T(o)

and the translate b = T'(0); namely, T(x) = Ax + b for any x e E". If T(x) = Ax + b for

all x e E™, then T s an affine transformation.

Below are a collection of properties of the affine transformation, which geometrically
describe its action. Proofs of these properties can be found on pages 23 of [60], page 24

of [59], page 379 of [60], page 92 of [17], on pages 4 and 5 of [52], respectively.
Properties 2.4.8. Let T : E® — E™ be an affine transformation.
(i) For any A< E", T(aff(A)) = aff(T(A)). Hence, T(A) is an affine set if A is
an affine set.
(i) If A< E™ is a convex set, then T(A) is convexr.

(iii) Let A, B < E" be parallel affine sets; namely, A = B + t for some t € E".
Then, the flats T(A) and T(B) are parallel in E™; i.e., there ezists t' € E™
such that T(A) = T(B) + t'.

(iv) Affine transformations preserve ratios of lengths along parallel lines.

(v) If A < E" is a convex set, then T maps the extreme points of A onto the

extreme points of T(A).

(vi) For any A < E", T(conv(A)) = conv(T(A)).
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2.5 Open and Closed Sets

The open ball with radius r and centre a € [E” is the set of all vectors in E™ whose distance
from the vector a is strictly less than r and is denoted by B(a,r); ie., B(a,r) = {x €
E™ | |a — x| < r}. Similarly, the closed ball with radius r and centre a is denoted and

defined by Bla,r] = {x e E" | [|la — x| < r}.

- -
- ~

Soenm="

Open disc, B(a,r), in E? Closed disc, B[a, 7], in E?

Figure 2.2

An element x of a set S in E” is called an interior point of S if there exists a real
number r > 0 such that an open ball with radius r whose centre is x is contained in S i.e.,
B(x,7) < S. The set of all interior points of S is called the interior of S and is denoted by
int(.S). Similarly, the relative interior of a set S is the collection of all elements x € S such
that B(x,r) n aff(S) < S, for some real number r > 0. In other words, the relative interior
of a set S is its interior relative to its affine hull. Denote the relative interior of a set S by
relint(S). Note that the relative interior of any affine set in E” is itself and if int(S) # &,
then relint(S) = int(S) (see page 37 of [60]).

A set S is said to be open if each of its elements is an interior point of S. A set S is said
to be closed if its complement E™\S is open. The intersection of all closed sets containing

the set S we call the closure of S and denote it by cl(S5).
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Below, is a collection of properties and examples of open and closed sets; proofs of all but
the last statement can be found on page 94 of [42], page 35 of [50], page 22 of [1], page 33
of [60], page 328 of [46], page 36 of [60] and page 99 of [42], respectively. The last statement

follows from the preceding statement and Corollary 2.10.8.

Theorem 2.5.1.
(i) Arbitrary intersections of closed sets are closed and arbitrary unions of open
sets are open.
(it) The closure of any set is closed and the interior of any set is open.
(3t3) Let A< X. If A is closed, then cl(A) = A. If A is open, then A = int(A).
(iv) Open balls in E™ are open.
(v) 8" ' ={zeE"||z| =1} is closed in E".
(vi) Affine sets in E™ are closed.
(vii) Finite point sets in E" are closed.
(viii) Closed line segments in E™ are closed.
A topology on a set X is a collection, T, of subsets of X such that ¢J and X belong to
T, the union of the elements from any sub-collection of 7 is also in 7, and the intersection
of any finite sub-collection of T also belongs to 7. The set X together with a topology T is

called a topological space. Euclidean n-space is an example of a topological space (see page

142 of [2]). A proof of the following statement can be found on page 94 of [42].

Theorem 2.5.2. Let Y be a subset of the topological space (X,T). Then, a set A is closed
in'Y with the subspace topology, Ty ={Y nU | U € T}, if and only if A can be written as
the intersection of a closed set of (X, T) with Y.

A proof of the following statement is on page 96 of [42].
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Theorem 2.5.3. Let A be a subset of some topological space X. Then, x € cl(A) if and only

if every open set U containing x intersects A.

The following theorem shows the relationship between interiors of sets and closures of

sets.
Theorem 2.5.4. Let A be a subset of some topological space X. Then,
cl(X\A) = X\int(A).

Proof. First, it will be shown that cl(X\A) < X\int(A). Recall that int(A) is an open
set. It follows by definition that X\int(A) is closed. Let z € X\A be arbitrarily chosen.
Then, x € X and x ¢ A. It follows that = ¢ int(A) since int(A) < A. This implies that
x € X\int(A). Therefore, X\A < X\int(A). However, by definition cl(X\A) is the smallest
closed set containing X\ A. Thus, cl(X\A) € X\int(A).

Now, it will be shown that X\int(A) < cl(X\A). Let x € X\int(A) be arbitrarily chosen.
Then, z € X and z ¢ int(A). This implies that for every open set U containing x in
X, U &€ A. This means that U n (X\A) # (J, for every open set U containing x. By
Theorem 2.5.3, it follows that z € cI(X\A). Hence, X\int(A) < cl(X\A). |

A proof of the elementary but useful fact below can be found on page 1 of [29].
Lemma 2.5.5. Let A < B in some topological space X. Then, int(A) < int(B).
The next result follows from Lemma 2.5.5 and Theorem 2.5.4.
Corollary 2.5.6. Let A < B in some topological space X. Then, cl(A) < cl(B).

The boundary of a set S, which we denote by bd(S), is the intersection of the closure of S
with the closure of its complement E™\S, i.e. bd(S) = cl(S)ncl(E™\S). The relative boundary
of a set S, relbd(S), are all the elements which lie in the closure of S but which do not lie in
the relative interior of S. It follows directly from this definition that relbd(S)nrelint(S) = &
and that relbd(S) u relint(S) = cl(S). Also, note that if aff(S) = E", relbd(S) = bd(S5).

Furthermore, the relative boundary of any affine set in E™ is empty.
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Theorem 2.5.7. For any set S, cl(S) = int(S) u bd(S) and int(S) N bd(S) = &. Conse-
quently, bd(S) = cl(S)\int(K).

2.6 Sequences

A sequence {sy}reny in E" converges to the vector s if for each real e > 0 there exists an
integer N such that for all £ € N where & > N, |sx —s| < e. Given the sequence {s}ren
in E™ and a sequence k;;cy of positive integers, such that k; < ko < k3 < ..., the sequence

{sk, }ien 1s called a subsequence of {sy}ken.

Theorem 2.6.1. A sequence {si}ren converges to s if and only if every subsequence of

{Sk}ren converges to s.
A proof of the following theorem can be found on page 99 of [42].

Theorem 2.6.2. A sequence of points of E" converges to at most one point of E™.
See Lemma 21.2 on page 130 of [42] for a proof of the theorem below.

Theorem 2.6.3. Let X be a topological space and let S = X. If there exists a sequence of
points of S which converges to x, then x € cl(S). Moreover, if there exists a metric d on X,

then the converse also holds.

The next theorem describes a useful property for sequences of real numbers; a proof of

the statement can be found on page 168 of [34].

Theorem 2.6.4. Let {zy}reny and {yx}tren be two convergent sequences of real numbers, which

converge to x € R and y € R respectively. If xp, < yi for all k € N, then x < y.

18



2.7 Bounded Sets

A set S in E" is said to be bounded if there exists some real number M > 0 such that for
every pair of vectors x1,x5 € .9,

”X]_ — X2H < M.

An extremely useful property of bounded sequences in E", known as the Bolzano—
Weierstrass theorem, is stated below; a proof of this statement can be found on page 39

of [60].

Theorem 2.7.1. Fvery bounded sequence of points in E™ contains a convergent subsequence.
One consequence of the Bolzano-Weierstrass theorem is the following statement.

Corollary 2.7.2. Fvery bounded divergent sequence in E™, has at least two limit points.

A well-known property for bounded sequences of real numbers that are either non-
increasing or non-decreasing, known as the monotone convergence theorem, is stated below;

its proof can be found on page 175 of [34].

Theorem 2.7.3. Let {x}}ren be a bounded sequence of real numbers such that either xj <

Tpy1 Or Ty = Tpyq for all k € N. Then, {xy}ren converges.

2.8 Compact Sets

A set C'is said to be compact if every collection of open subsets of C' whose union contains
C can be reduced to a finite subcollection whose union also contains C'.

Unlike in some metric spaces, the following characterization of compact sets holds in E".

Theorem 2.8.1. A set in E™ is compact if and only if it is closed and bounded.
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A proof of the last theorem can be found on page 40 of [60]. A subset of a compact set
may or may not be compact. The next result describes a condition which guarantees that
the property of compactness is passed down from a compact set to its subset; a proof of this

result can be found on pages 37 and 38 of [50].
Theorem 2.8.2. Closed subsets of compact sets are compact.

A proof of the claim below can be found on page 1 of [53].
Proposition 2.8.3. The finite union of compact sets is compact.

The following theorem combines the concepts of closed and compact sets to provide a

property for Minkowski sums; see page 43 of [60] for its proof.
Theorem 2.8.4. Let A < E" be compact and B < E™ be closed. Then, A+ B is closed.

Let A be a non-empty subset of E". For each x € E", the distance between A and x is
defined and denoted by
d(A,x) =inf{|a—x| |ae A}.

In general, the infimum in the definition above cannot be replaced with minimum. However,
the theorem below provides the conditions necessary for this replacement to occur; its proof

can be found on pages 46 and 47 of [60].

Theorem 2.8.5. If A, B € E" are non-empty sets where A is closed and B is compact, then

there exist ag € A and bg € B such that

Jao ~ bol| = _int Ja—bl.

Note that the points ag and bq are called the nearest points of A and B; they are not

necessarily unique.
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2.9 Continuous functions

Let f: X — Y be a function. If S € Y, then the set of all elements of X whose images under
f lie in S is called the pre-image of S under f and is denoted by f~!(S). Note that when
f is a bijection, the pre-image f~! coincides with the inverse of f. A function f: X — Y
is said to be continuous if for each open subset U of Y, the pre-image f~!'(U) is an open
subset of X.

A generalized version of the Extreme Value Theorem from Calculus is presented below;

its proof can be found on page 174 of [42].

Extreme Value Theorem. Let f : X — Y be a continuous function where Y 1is an
ordered set in the order topology. If X s compact, then there exists elements ¢,d € X such

that f(c) < f(z) < f(d) for every v € X.

Another useful fact about affine transformations is stated in the following lemma, which

is proved on pages 44 and 45 of [60].
Lemma 2.9.1. Affine transformations are continuous.

The next theorem describes the action of continuous functions on compact sets; see page

30 of [37] for its proof.

Theorem 2.9.2. Let f : X — Y be a continuous function and let A < X be compact. Then,

the image of A under f, f(A), is compact.

2.10 Convex Sets

A set is called convex if for any two vectors in the set, the line segment joining the two
vectors is also contained by the set. Explicitly, a set C'in E" is convex if Ax + (1 — \)y € C

for any vectors x,y € C and any scalar A € R where 1 > A > 0.
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Convex set in E?2 Non-convex set in E2

Figure 2.3

Below is a collection of important convex sets. Proofs of the last two facts can be found

on page 50 of [60].
Properties 2.10.1.

(i) Affine sets are conver.
(it) Line segments are conved.
(iit) Halfspaces are conver.

(iv) Balls are convex.

It follows from (i) of Properties 2.10.1 that singleton sets and the empty set are convex.
Note that, like affine sets, convex sets have the following property; a proof of this property

can be found on page 50 of [60].
Theorem 2.10.2. The intersection of an arbitrary family of convex sets in E™ is convexz.

The next property describes the interaction between convexity, Minkowski addition and

scalar multiplication; its proof can be found on page 51 of [60].

Theorem 2.10.3. If A < E" is convex and A1, \1, ..., A\, =0, then
AM+M+. . FAN)A=MA+ A+ .+ A
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A vector is said to be a convex combination of the vectors Xy,Xa, ..., Xy in E™ if it can
be written as A\;x7 + AoX2 + ...+ A\Xm. The following theorem about convex combinations

is proved on page 50 of [60].

Theorem 2.10.4. Let cq,...,c,, be elements of a conver set C in E". Then the convex

combination A\ic1 + ...+ A\nCp belongs to C for Ay,... Ay =0 with Ay + ...+ A\, = 1.

The convex hull of any set A in E", denoted by conv(A) is the intersection of all convex
sets in E™ containing A. Let A, A\, ..., A, = 0 be scalars with the property that A\; + Ay +
...+ An = 1. Equivalently, the convex hull of any set A in E" is the set of all convex
combinations of the vectors in A (see page 55 of [60]).

Two useful facts about the convex hull are stated below; sketches of their proofs are

outlined on page 54 of [60].

Proposition 2.10.5. The convex hull of any set S < E", conv(S), is the smallest convex

set containing S. Furthermore, if S € E" is convex, then conv(S) = S.
Proposition 2.10.6. If A < B, then conv(A) < conv(B).

The theorem and corollary below describe the action of the convex hull on open and

compact sets, respectively; the theorem is proved on pages 57 and 58 of [60].

Theorem 2.10.7. The convex hull of an open set in E™ is open and the convex hull of a

compact set in E™ is compact.
Corollary 2.10.8. The convex hull of a finite set in E™ is compact.
A proof of the next statement can be found on page 61 of [60].
Theorem 2.10.9. The relative interior of a non-empty conver set in E™ is non-empty.

The following theorem, although elementary, is extremely useful; it is proved on page 5

of [51] and page 62 of [60].
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Theorem 2.10.10. Let A < E" be conver. Ifx € int(A) andy € cl(A), then [x,y) < int(A).

Likewise, if x € relint(A) and y € cl(A), then [x,y) < relint(A).
See page 61 of [60] for a proof of the corollary.

Corollary 2.10.11. Let A < E™ be convez. If x € int(A) and y € A, then [x,y) < int(A).
See page 210 of [3] for an explanation of the corollary below.

Corollary 2.10.12. Every ray (half line) emanating from an interior point of a convex body

intersects the boundary of the convex body at exactly one point.

It immediately follows from Corollary 2.10.12 that any line passing through an interior
point of some convex body will intersect the boundary of the convex body at exactly two

points.

Lemma 2.10.13. Let A be a closed convex set. For any arbitrarily chosen x,y € bd(A),
[x,¥] € bd(S) or (x,y) < int(S).

Corollary 2.10.14. Let A < E" be a convex body. Then, bd(A) is not convex.
The following statement is proved on page 62 of [60].

Theorem 2.10.15. Let S < E" be a convex set. Then int(S), relint(S) and cl(S) are convex

sets.
See page 73 of [8] for a proof of the next theorem.

Theorem 2.10.16. Let K < E? be a convex body. Then, bd(K) is a simple closed curve.

2.10.1 Support Hyperplanes and Separating Hyperplanes

Let K be a closed bounded convex set in E" and let k € K be arbitrarily chosen. A
hyperplane H supports K if H n K # & and either K € H" or K < H™. In addition, if

k € H n K, then the hyperplane H is said to support K at k. Any hyperplane that supports

24



K is called a supporting hyperplane of K. Let H = {x e E® | (x,u) = A\, ue S"!, \e R}
be a supporting hyperplane of K where K < H". Then, —u is an outward normal vector of
H and H" is called the supporting halfspace of K. Likewise, u is an outward normal vector
of Hif Hn K # @ and H™ is the supporting halfspace of K.

The following theorem is fundamental to the study of convex, discrete geometry; its proof

can be found on pages 31 to 38 of [39].

Theorem 2.10.1.1. Through each boundary point, X, of a closed, convex set C' in E™ there

passes at least one hyperplane supporting C at x.

The question of how many parallel hyperplanes that support a convex body is answered

in the next theorem; a proof of the theorem can be found on page 8 of [19].

Theorem 2.10.1.2. Let C < E" be some convex body. Then for each (closed affine) hyper-
plane H in E™ there exist exactly two supporting hyperplanes of C, which are parallel to H

in E™.

Theorem 2.10.1.3. Every closed bounded convex set K in E™ is the intersection of all its

supporting half-spaces.

Proposition 2.10.1.4. Let S be a closed, convex set of E™ with non-empty interior. Suppose
that the hyperplane H = {x € B3 | (x,u) = )\, ue 8" !, X\ € R} meets S but does not support
S. Then, H nint(S) # .

Proof. Suppose H does not support S but S~ H # &&. It follows that S & H~ and S € H™.
This means that there exists elements s;,8, € S such that s, € H- = {x € E? | (x,u) <
N ueS"H NeR}ands, e HN = {xe E? | (x,u) > )\, ue 8" ! \eR}. By convexity,

[s1,82] < S. Let
. A— <Slvu>
a <527u> _<527u>.

Then,

A —{s,u)
(s9,u) — (s1,u

{(s1+ p(sy—s1),uy={s;,uy+

(G0 -Giw)

25



Notice that
(sg,uy — (s1,uy > X\ — (s,u)y > 0. (%)
It follows that, ((s2,u) — (s1, u>)2 > 0. Moreover,

1
<527 u> - <Sl7 11>

<<sg,u> - <sl,u>>2 = (89,u) — {s,u) > 0.

This means
1

> 0.
<SQ7 11> - <Slv u>
Combine this inequality with (x) to get that 0 < u < 1.

Therefore, s; + p1(sg — 1) € (81,82) N H S [s1,82] n H<S S n H.
Recall that since S is closed, it can be written as the union of the disjoint sets int(S) and
bd(S). It follows that either sy + p (s — 1) € int(S) or s; + u (s2 — s1) € bd(.5).

Suppose 81 + 1 (sg — s1) € int(.S). Then, there is nothing more to show.

Now, suppose that s; + p (sy — s1) € bd(.S). Then, [sy,s2], [81,82), (s1,82] & int(.S). This
together with Theorem 2.10.10 and the convexity of int(S) imply that neither s; € int(.S)
nor sy € int(S). Therefore, [s1,s2] € bd(.S). Since int(S) # &, there exists s’ € int(.5).

If s’ € H, then there is nothing more to show.
A= w)
<SQ7 ll> - <S/7 u>

"+ (sg—8),u)y=(',u) +

If s € H™, then let i/ = and observe that, just like above,

A= w)
(82, 1) — (s, w)

(o) = s'w)
=\

Moreover, a nearly identical proof to the one above used for p will show that 0 < p/ < 1. This
means that s’ + y/ (so — ') € (8/,82) n H. By Theorem 2.10.10, [s’,s2) < int(S). Therefore,
s+ (s — ') eint(S) n H.

N —
If s € H*, then let p”" = (1w and notice that

(s u) — (s1,u)

(81 +p" (8 —s1),u) = (sy,u) +

A —{s,u)
<S/> ll> - <Sla u>
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A very similar proof to the one used above for p will show that 0 < p” < 1. This means
that s; + p” (8" —s1) € (s1,8') n H. Again, by Theorem 2.10.10, (s1,s’] < int(S). Thus,

s1+p" (s —s1) eint(S) n H. |

Theorem 2.10.1.5. Let A and B in E™ be disjoint, non-empty convex sets. Then, there

exists a hyperplane H in E™ that properly separates A and B.

2.11 Cones

A non-empty set S < E™ is called a cone if for every A > 0 and every s € S, As € 5. All

cones contain the origin and all cones are unbounded sets, except for the trivial cone: {o}.

To-axis

T1-axis

Figure 2.4: Not all cones are convex. For example, the set {(xy,z3) | 1179 = 0} in E? is a

cone which is not convex.

The following theorem provides a condition for determining when a cone is convex. Its

proof can be found on page 76 of [60].
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Theorem 2.11.1. Let S be a non-empty set in E". Then, S is a convex cone if and only if

A181 + Aosg € S for all 1,85 € S and A\, Ay = 0.

The set {sy + As | sp € E", s # 0, A = 0} is referred to as the ray emanating from sy with
direction s. The ray together with the zero vector is a 1-dimensional convex cone. A cone
can be expressed as a union rays; the apexr of a cone is the point from whence the rays
emanate. For example, the apex of the cone

s A=0}

seS

is the origin. Let S be a cone whose apex is the origin and let sy # o. The translate of S by

so together with the zero vector, {s) + As |s € S, A = 0} U {0}, is a cone with apex sy.
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Chapter 3

The Blaschke Selection Theorem, Mazur’s Finite
Dimensional Density Theorem and the John - Lowner

Theorem

3.1 The Blaschke Selection Theorem

Let K™ denote the set containing all non-empty, compact, convex sets in E". The distance

between any two elements K; and K5 of K" is denoted and defined by

0 (Ky, Ks) = max{ max min |k; —ko|| , max min |k; — kQH}.
k1€K1 kQEKQ k2€K2 k1€K1

The function ¢ : K" x K™ — K" is called the Hausdorff distance. The Hausdorff distance

between any two non-empty, compact convex sets in [E™ has an equivalent formulation:
Proposition 3.1.1. Let K1, K5 € K" be arbitrarily chosen. Then,
O (K1, Kp) =min{A\>0| Ky € Ky +AB(o,1), Ky € K; + AB(o,1)}.
A detailed proof of Proposition 3.1.2 can be found on p. 12 of [6].
Proposition 3.1.2. The set K™ together with § is a metric space.

A sequence {X;} is called a Cauchy sequence in the metric space (X, El) if for all € > 0,
there exists an integer N such that

~

d (Xl,XJ) <eé,

whenever i, 7 = N. A metric space (X, 61) is said to be complete if every Cauchy sequence in
X converges. A proof for the following property of Cauchy sequences can be found on page

20 of [37].
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Proposition 3.1.3. Every Cauchy sequence is bounded.

The following well-known theorem is needed in the proof of Lemma 3.1.4. The overall

structure and the second case of its proof is due to [4]; the first case is due to [30].

Cantor Intersection Theorem. Let {C;},. be a sequence of non-empty, compact sets
from E™ such that C;11 < C; for all i € N. Then, the set

&

0
=1

7

18 a non-empty, compact set of E".

Proof. First, it will be shown that (1,2, C; is compact.
Let x1,x5 € ﬂfozl C; be arbitrarily chosen. Notice that ﬂfil C; < C;, for each i € N. Each
C; is compact in E™ and therefore, each C; bounded in E™. Since x; and x5 also belong to
C;, it follows that there exists a real number M such that |x; — x2| < M. Thus, (-, C; is
bounded.
Each C; is compact in E” and therefore, each Cj is closed in E™. It follows from Theorem 2.5.1
that (;—, C; is closed in E". Hence, (,—, C; is compact in E".

Finally, it will be shown that ()2, C; # & in the following two cases.
Case 1: Suppose that not every C; contains infinitely many points.
This means that there exists C;, € {C;},.y such that 0 < |C;,| < o0. Since C; is non-empty

and (.1 < C; for all i € N, it follows that
o0 > |Cio| = |C¢0+1| >...>0.

The sequence {|C;|} is a bounded monotone decreasing sequence of integers. By Theo-

=10
rem 2.7.3, the sequence {|Cj|},.; converges; denote the number to which it converges by L.

Suppose for a contradiction that L € R\Z. Let ¢ = min{[L] — L,L — |L|}. Recall that

[L] =min{ne€Z |n > L} and |L| = max{m e Z | m < L}. Tt follows that

O0<[L]-L<1 and O0<L—|L] <1
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Since |C;| € Z for all i = iy, |C;| cannot be any closer to L than the integers [L] or |L].
Therefore,

||Cs| —L|=[L]—L and ||Ci|—L|>L-|L],

for all 7 > 7. Thus,

|Ci| — L| > ¢, for all i > iy. This is a contradiction. Hence, L € Z.

Like above, let ¢ = min {[L] — L, L — |L]}. Since the sequence {|Cj|},, converges to L € Z,

110

there exists NV € N such that
‘ |CZ| — L‘ <eg,

for all « > N. Recall from above that 0 < ¢ < 1. The minimum distance between two
distinct integers is 1. Therefore, ||C;| — L| = 0, for all i > N. This means that |Cj| = L, for
all 4 > N. This implies two things: L # 0, since each C; # ¢J and C; = Cy,4 for all i > N,
since C;,1 < C; for all 1 € N. Hence,

o

ﬂ Ci=Cny1 # .

i=1
Case 2: Suppose that each C; has infinitely many points.
Let A = {x1,%y,...} where x; € C;. Since C;;; < C; for all 7 € N, it follows that A < (.
Recall that 'y is bounded. This together with the Bolzano Weierstrass Theorem implies that
A contains a convergent subsequence; denote the point to which the subsequence converges
by x.
By definition, this means that every open neighbourhood of x intersects A at some point
other than x. In fact, every open neighbourhood of x contains infinitely many points of
A. To see this, suppose for a contradiction that it is not so. This means that every open
neighbourhood of x contains only a finite number of points from A which are distinct from
x; denote these points by aj,a;,...,a,. Let r = min{|a; — x|, |as — x|, .., [an — x|}
Notice that r > 0. Then, the open neighbourhood B (X, g) of x has empty intersection with
A. This is a contradiction.
Certainly, {x;,X;41,...} € A n C; for each i € N. To see that any open neighbourhood

of x has non-empty intersection with C; for all i € N, suppose for a contradiction that
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there exists an open neighbourhood U of x such that U n C; = J for some ¢ € N. Then,
{xi,Xit1,...} n U = . Notice that {x;,x;11,...} = A\{x1,X2,...,%;_1} and recall that
AnU # . It follows that A n U < {x1,Xa,...,X;_1}, which means that |[AnU| <i—1
for some i € N. This contradicts that |A n U| € .
By Theorem 2.5.3, x € cl(C;) for all i € N. Since each C; is closed, x € C; for all i € N.
Thus, x € ()2, Ci. This means that (-, C; # &.

[

The lemma below is required in the proof of Theorem 3.1.5. The proof of the lemma is

due to [51].

Lemma 3.1.4. Let {K;},. be a sequence from K" such that K;1 < K; for alli e N. Then,

ee}
5(1@, ﬂK) -0
=1
as 1 — 0.

Proof. Tt follows from Cantor Intersection Theorem and Theorem 2.10.2 that ﬁ K, e K"

For simplicity, denote ();—, K; by K. To show that § (K;, K) — 0 as i — 0, iS:ulppose for a
contradiction that § (K;, K) - 0 as ¢ — o0. This means that there exists ¢ > 0 such that
K; ¢ K +¢eB(o,1) for all i € N. Let A; = K,\int(K + B (o,1)). Since K; is non-empty
and K; € K + €B (o, 1), there exists x € K; such that x ¢ K + B (o,1) for all 7 € N. This
means x ¢ int(K + eB(o,1)), since int(K + eB(0,1)) < K + B (0,1). Therefore, x € A;
for all 4+ € N. This means that A; is non-empty for all ¢ € N. Notice that A; < K; for all

1 € N. Therefore, A; is bounded in E" for all 7 € N. Also, notice that
A; = K\int(K + B (0,1)))
=K;n (E”\int(K +eB(o,1) ))
— K n cl(]E”\(K + B (o, 1) )).
Each K; is closed and by Theorem 2.5.1, cl <E"\(K +¢eB (o, 1) )) is closed in E™. Thus, each
A; is closed in E™. Hence, A; is compact. Moreover, A, 1 € A; for all i € N. Therefore, it
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follows from Cantor Intersection Theorem that (),—, A; is non-empty.
It will be helpful to notice that K < int (K + eB (o, 1) ) To see this, begin by arbitrarily
selecting x € K. Then, B(x,e) = x +¢B(0,1) € | J gk +eB(o,1) = K +¢B(o,1). By
definition, x € int (K +¢B (0,1) ). This, in particular, implies that K\int(K +eB (0,1) ) = &.
Now, observe that

@ w0

K n ﬂAi =Kn ﬂ (Ki\int(K + ¢B (o, 1))>
i=1 i=1

=Kn <K1\int(K +eB(o,1)) n ﬁ (Ki\int(K +¢eB(o,1) )>

=2

then, it follows from a basic set theory identity that

=K, n <K\1nt(K+€B > ﬁ (K\mt K +¢eB(o 1))>
=Jn ﬁ <Kz-\int(K + B (o, 1))) = .

Since each A; < K, it follows that ﬂfil A; € K. This is a contradiction. Hence,
[o0]
5 (K N Ki> -0
i=1
as ¢ — oo. [ |

The following theorem plays an essential role in the proof of The Blaschke Selection

Theorem. Its proof is also due to [51].
Theorem 3.1.5. The metric space (K", 6) is complete.

Proof. Let {K;},. be a Cauchy sequence in K" and let

0
Amzc:l(U Ki) =cl (K, UKpn1u...).

i=m

Since K11 U Ko u ... € K, u Ky U .. it follows from Corollary 2.5.6 that
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Notice that

KicKnuKppu...ccd(KypuKpgu...)=A,, (%)

for any ¢« > m and since each K; € K" is non-empty, it follows that A,, is non-empty. Also,
each A,, is closed by Theorem 2.5.1.
Claim: G K; is bounded for any m € N.

Let k', K’ eZanim K; and i* € {m,m + 1,...} be arbitrarily chosen. Then, there exists K;
and K; where i,j € {m,m + 1,...} such that k' € K; and k" € K;. By Proposition 3.1.3,
there exists a real number M > 0 such that 0 (K, K,) < M for all K,, K, € {K;}ien. In
particular, this means that K; < K« + MB" (0,1) and K; < K;» + MB" (0,1). This implies
that there exists x,y € K;» and by, by € B" (0, 1) such that k' = x+ Mb; and k" = y + Mb,.

Observe that
[k —K"| =[x + Mby — (y + Mb,) |
then, by the triangle inequality,
< [x =yl + M[by — by
then, using the triangle inequality again,

< x =yl + M([bof + [ = 1] b))

< |x-yl+2M
then, since each K; is bounded there exists a real number M;« > 0 such that
< My + 2M.

To see that each A,, is bounded, let a,a’ € A,, be arbitrarily chosen. It follows from
Theorem 2.6.3 that there exists sequences {a;}ieny and {a)};ey whose elements belong to

Q0
U K; and which converge to a and a’, respectively. Then,

la—a'| = [(a—a) + (a] — &) + (a; — 2y

34



then, by the triangle inequality,
< [-1[|la; — a] + [a} — a| + [a; — ay]
0
then, since U K; is bounded,
i=m

< [-1]|a; —a| + [aj — a'|| + M +2M

then, since a; — a and a); — a’, there exists Ny, N, € N such that

e ¢

<§+§+M=e’+Mi*+2M,

for all # > Ny and 7 > N,. Hence, each A, is compact.

By Lemma 3.1.4, the sequence {A,,}, . converges to A = ﬁAi as m — 0. Then, for
some ¢ > 0, there exists N € N such that A4,, € A + ¢B" (o, 1)i,:%or any m > N. It follows
from (%) that K; € A,, € A+¢eB" (0,1), for all i > m > N.

Since {K;}, .y is a Cauchy sequence, there exists N’ € N such that K; < K; + %B” (0,1)

for all 4,j > N’. Let N* = max{N, N'}. It follows that for all i, m > N* + 1,
€ €
K, < K;,+ an (O7 1) , Km+1 c K; + an (O, 1) ,

Therefore,

CJ K; + B”(o 1).

:m

It follows that

A, =l (6 fg) cd (K,. + 28" (o, 1)) — K+ %B” [0,1] € K; + gB" (0,1), ()

. 3
j=m

for all i, m > N* + 1. As a consequence of Lemma 3.1.4, there exists N” € N such that
AC A+ %B” (0,1), (1)

for any m > N”. Let N = max{N* + 1, N"}. It follows from (%), () and Proposition 2.1.1

that

Ac A, + gB" (0,1) € K; + gB" (0,1) + gB” (0,1)
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then, by Properties 2.10.1 and Theorem 2.10.3,
= K;+¢B"(o,1),

for all i, = N + 1. Hence, 0 (K, A) < e for any i > N + 1.

A closed n-cube of E™ with centre a and side length 2R is defined by
{ZEE”|max{|zl—a1|,|z2—a2|,...,|zn—an|} <R}
The proof of the well-known The Blaschke Selection Theorem is due to [35] and [51].

The Blaschke Selection Theorem. From each bounded sequence of convex bodies one can

select a subsequence converging to a convex body.

Proof of Blaschke Selection Theorem.

Let {K;},.y be a bounded sequence whose elements belong to K. This means that there
exists a real number M > 0 such that § (K, K*) < M, for all K, K* € {K;},. Each
K; of the sequence {Kj;},y is non-empty, since each K; € K". Therefore, | J;2, K; # .
Let k € Ujil K; be arbitrarily chosen. Also, choose some K;« € {K;},  arbitrarily. Since
K;« € K", it follows that K;» is compact and thus, bounded. So, there exists a real number

M;» > 0 such that |k; — ko| < M+, for any ki, ks € K+, Let
C={zeE" | max{|z],...,|z|} <2M + M; + |k[}.

Claim: G K, < C.
Let x € Uf:le be arbitrarily chosen. Then, there exists 7,5 € N such that x € K; and
k € K;. It follows from the boundedness of {K;},_ that K; < K;» + MB"(o,1) and
K; < Ky + MB" (0,1). Therefore, there exists k;, ks € K;» and by, by € B" (0,1) such that

x = k; + Mb; and k = ks + Mb,. Observe that

n

max { 21, Jeal } < 4 [ ll” = [x]
i=1
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then, by the triange inequality,

< [x = k| + (k]

= |k1 + Mby — (ko + Mby) | + | K|
then, by the triangle inequality,

< ki = kol + M ([by| + | = 1] - [ba])) + K]

< My +2M + |k

This implies that x € C'.
Note that C' is a cube with edge length M = 2- (2M + M;» + |k|). It follows from the
claim that the sequence {K;},  is contained in the cube C. Sub-divide each edge of C

an

M
into 2™ equal parts to create closed sub-cubes of C' each with edge length o whose

union is equal to C'; denote the collection of these sub-cubes by C,, = {ij}mjel where
I={1,...,2m"},

If K € {K;},.y has non-empty intersection with a collection of sub-cubes {Omj}mjes
where S < {1,...,2™"} from Cy,, then {J,, g Cp, is said to be an |S|-minimal covering of
K.

For m = 1, there are only finitely many possible minimal coverings for the elements of the
sequence {K;},.y with the 2" sub-cubes of Cj; namely, 22" — 1 possible minimal coverings.
By the Infinite Pigeonhole Principle (see [55]), there exists infinitely many elements of the
sequence {K},  with the same minimal covering. Denote this subsequence of { K}, whose
elements have the same minimal covering, by {K7,},.y-

Similarly, the sequence { K7, },. contains an infinite subsequence { Kj, },.y whose elements
have the same minimal covering by sub-cubes of (5.

Continue in this way to obtain a sequence { K,,, }iey whose elements have the same mini-
mal covering by sub-cubes of C,,, and which is a subsequence of { K, };en, for any fixed m € N

and for any integer p < m.
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M \/ﬁ
2m
Denote the sub-cubes which minimally cover K, by {Cpq}qe ¢ Where S < {1,...,2P"}. Since

Claim: For any 4, j € N and any fixed integers p < m, d (Kpl, K,, )

p < m, the element K, belongs to a subsequence of the sequence to which K, belongs and
therefore, is also minimally covered by the same sub-cubes of C}, which minimally cover K,,.

It follows that

K, €| G, (%)

qesS

Let x € | , be arbitrarily chosen. There exists at least one sub-cube C* € |

qu qu

such that x € C*. Since C™ is part of the minimal covering of K,,, K,, n C* # . Both K,
and C* are closed, so K,,, nC* is closed by Theorem 2.5.1. The set {x} is closed and bounded
and thus, compact in E". It follows from Theorem 2.8.5 that there exists z € K, n C* so
that d (x, K, n C*) = |x — z||. Observe that

HX - ZH = d(X7 Kpi N C*) = inf{HX - yH ‘ ye€ Kpi}

<max{|c; — ¢ | €1,c0 € C*} =

J/\/[\\/ﬁ
ow

Therefore,

xeB"(z,%f) =z+%ﬁ-B”(o,1) sz+]\/[2\f B" (o,1).

It follows that
M
Gy, € K+ 2" \F B" (0, 1).
qeS
This together with ((x)) implies that

—~

Myn _,
K, & Ky, + o -B"(0,1).

A similar argument can be used to show that K, < K, + MR B"(0,1). Hence,

pi»

) (K K, ) < Qf for any 7, 7 € N and any fixed integers p < m

It follows from the Claim that for any fixed integers p < m

Pp>

My/n
0 (Kpys Koy ) < —55—
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—~

M 1 1
Thus, for any € > 0, let N = —\/ﬁ Recall that > < — for all p € N. Then, whenever
€ p

m,p > N,

5 (K, Km,,) < Myn

Pp> 2p
]/\Z —~
< \/ﬁ<M\/ﬁ=€
P N

Thus, {Km,,}ey 18 @ Cauchy sequence. By Theorem 3.1.5, {K,,, },,oy converges to an

element of K. [}

The following Theorem describes how a convergent sequence of convex bodies can be

expressed as a convergent sequence of points. Its proof can be found on page 63 of [51].

Theorem 3.1.6. A sequence {K;}ien of convex bodies converges to K a convex body if and

only if
(i) Each element in K is the limit point of a sequence {k;}ien with k; € K.

(ii) The limit point of any convergent sequence {k;,}jen with k;, € K;, belongs to

K.

3.2 Mazur’s Finite Dimensional Density Theorem

A set S is dense in X if cl(S) = X. In contrast, a set is S called nowhere dense in X if
int(cl(S)) = &. The countable union of nowhere dense sets is a meagre set.

The elements from the boundary of a convex body K can be classified into two disjoint set
of points as follows. Let k € bd(K) be an arbitrarily chosen. It follows from Theorem 2.10.1.1
that there exists at least one hyperplane H through k, which supports K. If H is unique,
the boundary point k is said to be a smooth point. Otherwise, the boundary point k is called

a singular point.
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Let H be a supporting hyperplane of a convex body K at the point k" € bd(K'). Then,

H={xeE | (x,u) =& u)y, ueS" '} and the set
Nk (K) = {du| &k u) <K ), Vke K, AeR, ue S" '}

contains all outward normal vectors of each supporting hyperplane at the point k' € K
together with the zero vector. If k” is a smooth boundary point of K, then N (k') is a ray
emanating from o and therefore, Ny (k') is one-dimensional. If k’ is a singular boundary
point of K, then the dimension of Ng (k') is at least two (see p. 70 of [26]). The set N (k')
is called the normal cone of K at kK’; the lemma below explains why the set is so named.

The proof of the lemma is due to [26].
Lemma 3.2.1. The set Nk (k') is a closed, convex cone.
Proof. Let vq,vy € N (K') be arbitrarily chosen. Then,
x, vy <{K'\,vy) and (x,vy) <K' vy)
for all x € K. For any arbitrarily chosen real numbers A\;, Ao = 0,
M, v < MK v and A (x,ve) < A (K Vo)

and thus,

)\1 <X, V1> + )\2 <X, V2> < )\1 <k/, V1> + )\2 <k/, V2>

for all x € K. Use the properties of the inner product to get that
<X7 >\1V1 + )\2V2> < <k/, )\1V1 + /\2V2>

for all x € K. This means that A\;vy + Aavy € N (K'). It follows from Theorem 2.11.1 that
Nk (k') is a convex cone.
Let {v;};en be a convergent sequence whose elements belong to N (k’); denote the point

to which the sequence converges by v € E". Let x € K be arbitrarily chosen. It follows that

x, vy <K\ v
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for any 7 € N. Notice that

|<X7 Vi> - <X7 V>‘ = |<X7 Vi — V>| )
then, by the Cauchy Schwarz inequality,
< |x[vi = vl

and if x # o, then

€
— =€
]

< [x]
since v; — v as i — 0. If x = 0, then (x, v;) = (x, v) for all i € N; this would mean that the
sequence of real numbers {(x,v;)},_y is a constant sequence. In either case, the sequence of
real numbers {(x,Vv;)}.y converges to the real number (x,v). A nearly identical argument

can be used to show that the sequence of real numbers {(k’,v;)}, y converges to the real

number (k’, v). By Theorem 2.6.4,
x,vy <&, v)
for all x € K. This means that v € Ng (k’). Hence, Nk (k') is closed by Theorem 2.6.3. W

Mazur’s Finite Dimensional Density Theorem. Smooth points are dense in the bound-

ary of a convex body K < E".

The proof of Mazur’s finite dimensional density theorem, above, relies on the well-known
theorem below. Let {X;} be a countable collection of closed sets of the space (X,d), which
each have empty interior. The space (X, &) is said to be a Baire space if | ] X; also has empty
interior in (X, d).

Baire Category Theorem. If (X,&) 18 a compact Hausdorff space or a complete metric

space, then (X, a) is a Baire space.

A proof of the Baire Category Theorem can be found on page 296 of [42]. A topological
space X is called a Hausdorff space if for each pair of distinct elements z; and x5, there

exists disjoint open sets U; and Us in X, which contain x; and x, respectively.
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Lemma 3.2.2. A subset of a Hausdorff space equipped with the subspace topology is a Haus-

dorff space.

Proof. Let S be a subset of a Hausdorff space X and let s; and sy be arbitrarily chosen
distinct elements from S. Since X is Hausdorff there exists two disjoint open sets U; and Us
such that s; € U; and sy € Uy. Then, s; € Uy n .S and sy € Uy 1S where Uy 1 S,Usn S <
Ts = {SnU|U is open inX}, which implies that U; n .S and Uy n S are open in (S, 7s).
Moreover,

UinS)n(UynS)=UnlUy)nS=nS=¢.

Hence, (S, Ts) is Hausdorft. |

The proof of the above lemma, used in the proof of Mazur’s Finite Dimensional Density
Theorem, is due to [41]. All metric spaces are Hausdorff spaces (see p. 129 of [42]). Therefore,

E™ is a Hausdorff space.

Theorem 3.2.3. Let S <€ E™. Then, (S, Ts) is compact if and only if it is closed and bounded

in the Euclidean metric.

A proof of the above theorem can be found on p. 173 of [42]. The overall structure of the
proof of Mazur’s Finite Dimensional Density Theorem is due to [26] and the proof of Claim

1 is due to [48].

Proof of Mazur’s Finite Dimensional Density Theorem.
Let K < E” be an arbitrarily chosen convex body. First, it will be shown that bd(K) with
the subspace topology is a Baire space.

Since K is compact in E”, it follows that K is closed and bounded. By Theorem 2.5.7 and
Theorem 2.5.1, K = bd(K) uint(K) where bd(K) nint(K) = ¢J. This means that bd(K) <
K. This together with E" being Hausdorff and Lemma 3.2.2 imply that (bd(K), Tpacx)) is

a Hausdorff space.
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By definition, bd(K) = cl(E"\K)ncl(K). In particular, this implies that bd(K) is closed
in E". Let ky,ko € bd(K) be arbitrarily chosen. Since bd(K) < K, ki, ks € K. Recall that
K is bounded in E™. Therefore, there exists a real number M > 0 such that |k; —ks| < M
Thus, bd(K) is bounded in E". By Theorem 3.2.3, (bd(K), ’E)d(K)) is compact.

It follows from Baire Category Theorem that (bd(K )s Tod( K)) is a Baire space.

Now, it will be shown that the set of all singularities in bd(K) is meagre.

For all m € {1,2,...}, let
1
S = {ke bd(K) | 3 u,v e Ng (k) n 8" ! such that |[(u,v)| <1 - —}.
m

This means that for any x € S,,, there exists a distinct pair of outwards normal unit vec-
tors from the normal cone of K at x whose angle is at least arccos (1 —Y/,,) and at most

arccos (Y/,, — 1), since the inverse cosine function is monotonically decreasing. It is clear that

0
U Sy = {k € bd(K) | k is a singular point} .

m=1

Claim 1: Each S, is closed in (bd(K), Trq(x)), for all m € {1,2,...}.
Let {x;}ien be a convergent sequence whose elements belong to S,,. Denote the point to
which {x;};en converges by x. Since S, € bd(K) and bd(K) is closed in E", x € bd(K) by
Theorem 2.6.3. For each element x; € S, from the sequence {x;}.n, there exists u;,v; €
Nk (x;) 0 S™ 1 such that

[K{ug, vi)l <1 — —

This creates two sequences of unit vectors {u;};en and {v;};en whose elements belong to

G Nk (x;) n 8" 1 = gn-t <UNK X; ) c st

Let s1,sy € S"! be arbitrarily chosen. It follows that ||s;| = |sz|| = 1. Use this together

with the triangle inequality to get that

Is1 =2l < llsall + || = sl = llsall + | = 1]s2] = 2.
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This means that S"! is bounded. By Theorem 2.7.1, the sequences {u; };cy and {v;};cn have

convergent subsequences; denote the convergent subsequences by {u, };,en and {v;, };,en and

denote points to which they converge by u and v respectively. Note that S™~! is closed by

Theorem 2.5.1 and therefore, u, v € S"~! by Theorem 2.6.3.

Now, it will be shown that u,v € N (x). Let k € K be arbitrarily chosen. To see that

u € Nk (x), observe that

uk-x)=u—u;,k—x)+(u;,, k—x)
<[{u—u,k—x)|+{u;, k—x)
- ]<u—uij,k—x>\ +<uij7k_xij>+<uij’xij _X>

< |<u —u;,, k- x>| + <uij,k — XZ'].> + \<ui].,xij — X> |,
then, by the Cauchy Schwarz inequality,

< u = wy, [k = x| + Cuiy k= x5 + [ug |, — x|
then, <uij, k> < <u,;j,xl-j> since u;; € N (xij) n S™ 1 and thus,

< o=y, [k = x| + g, =i, — x|,
then, since |u;, | = 1 because u;; € N (x;,) n .S,

= [u =y [k = x| + xi; —x].

If k = x, then

(%) = lxi; —x[ <,

since the sequence {x;};en converges to x and therefore, the subsequence {xi].}ijeN converges

to x by Theorem 2.6.1. Recall, from above, that the distance between any two elements of

K is less than or equal to some M € R. Suppose k # x and M > 1. Since u;; — u and

X; — X as 1; — o0, there exists N7 € N such that for any i; > Ny,
J J ’ Y 4

19
Huij —uf < oM
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and there exists N, € N such that for any 7; > Ny,

Ixi — x| < ——.
oM

Thus, for any i; > N where N = max{Ny, No},

(+) < Mws, =] + M, =x| < M- 5+ M- o = <.

Now, suppose that k # x and M < 1. Again, since u;; — u and x;, — X as i; — o, there

exists N7 € N such that for any i; > N7y,

g
Huij - u” <3

2
and there exists Nj € N such that for any i; > N3,
€
Ixi, —x| < 3
Thus, for any i; > N’ where N’ = max{N{, Nj},
£
() <l —ul + i, x| < 5+ 5 =<

As ¢ - 0, (u,k—x) < 0. This means that (u,k) < (u,x) for any k € K. Hence,
u € Nk (x). A nearly identical argument can be used to show that v € Ng (x). Thus,
u,veNg(x)n St

The following argument will show that [(u,v)| < 1— % First, notice that the sequence
of real numbers {|(u;,, v;, )|}i,en converges to the real number |[(u, v)|. To see this, observe

that by the reverse triangle inequality
[ v )| = 1wl | < [ v, = )
- ‘<uij7vij> + <uiw _V> + <uij,v> +{-u, V>}

= Kuiﬁvij - V> + <uij —-u, V>

)

then, by the triangle inequality,
< [ vy = ¥)] + [, — v,
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then, by the Cauchy Schwarz inequality,

< i f[lvy; = vl + Jui; = uffv]

& €
:”Vij_V"H"‘”llij—u||<§+§:8

1
since u;; — u and v;; — v. Recall that [(u;,v;)] < 1 — — for each i € N and thus,
m
1
[{w;,, vi, )| < 1— = for each i; € N. Therefore, it follows from Theorem 2.6.4 that [(u, v)| <
m
1
1——.
m
Hence, x € S,,. In particular, this implies that S,, is closed in E™ by Theorem 2.6.3. It
follows from Theorem 2.5.2 that S,, is closed in (bd(K), Tra(x))-
Claim 2: Each S, is nowhere dense in (bd(K), Toax))-
Suppose, for a contradiction, that S,, is not nowhere dense.
It follows that intyq ) (clbd(K) (Sm)) # . Recall from Claim 1 that S,, is closed in
(bd(K),’ﬁ_)d(K)) and therefore, intyqx) (Sm) # . Let x € intpack) (Sim) be arbitrarily
chosen. It follows that there exists an open set U in (bd(K ), de(K)) such that x € U and

U < S,,. Note that
bd(U) NU = bdbd(K) (U) N intbd(K) (U) = @,

by Theorem 2.5.1 and Theorem 2.5.7.
Suppose U < conv (bd(U)). This means that for any u € U, there exists uy, us € bd(U) and
0 < A <1 such that u = Auy + (1 — \) us.

Suppose U & conv (bd(U)). This means that there exists z € U such that
z ¢ conv (bd(U)).

By Theorem 2.10.1.5, there exists a hyperplane, H, which properly separates {z} from
conv (bd(U)). Suppose without loss of generality that z € H. Note that K n H* is a
convex body. Let B be the maximum volume ball contained in the convex body K n H*.

It follows that B must touch the boundary of K n H* < U; denote the point at which this

46



occurs by b. Clearly, there is a unique supporting hyperplane of K at b € S,,, which is a
contradiction.

The set of all smooth points can be expressed as

bd(K)\ | S
m=1
By Theorem 2.5.4 and Claim 2,
oo (bd(K)\ U Sm> = bd(K)\intrae) (U Sm> — bd(K)\@ = bd(K).
m=1 m=1

0
Hence, bd(K)\ U Sy, is dense in (bd(K), Toacx))-

m=1

3.3 The John-Lowner Theorem

An ellipsoid, £, in E™ with centre a is defined to be
E=T(B"[o,1]) +a

where B" [0, 1] = {x € E" | ||x|| < 1} is the closed Euclidean unit ball, a € E" is a vector and
T :E™ — E" is an invertible linear transformation.

Let A be an n x n matrix. Denote the entry in the i-th row and j-th column of A by a;;.
Recall that a matrix A is symmetric if a;; = a;;, for all 1 < 4,j < n. A symmetric matrix A
is positive definite if (x, Ax) > 0, for all vectors x # o.

The proof of the result below follows from a comment on page 86 and Example 3 on page

81 of [28].

Proposition 3.3.1. Let A be an n xn matriz and let o; = (j1, Ja, - - -, jn) denote one element
from the set of all n! permutations of the integers from 1 to n, which is labelled by S,,. The
permutation o; is said to be even if an even number of two element exchanges are required

when starting from the natural ordering (1,2,...,4,i+ 1,...,n — 1,n) to get it into the form
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(J1,725 - -5 Jn). Likewise, the permutation is said to be odd if an odd number of two element
exchanges are required. For example, the permutation (3,2,1) is odd since it is obtained from
exchanging the numbers 1 and 3 in the permutation (1,2,3). If 0, is even, then sign (o;) =1
and if o; is odd, then sign (o;) = —1. The determinant of A is denoted and defined by
det(A) = Z sign (o) Haijr
O'J'GSn =1

The determinant map, which sends E™*™ to R, is a continuous function.

The properties of the determinant listed below are useful; their proofs can be found after
Theorem 2 on page 49 of [33], Theorem 2 on page 117 of [43] and Theorem 5 on page 113

of [43], respectively.
Properties 3.3.2. For any n x n matrices A and B,

(i) det(AB) = det(A) det(B);

(it) A is invertible if and only if det(A) # 0;
1

cee ] A . . . Ail _ .
(i5t) If A is invertible, then det (A~") det(4)’

(iv) Let A and B be square matrices and let

C —
0 B
be a block matriz where O represents a matriz whose entries are all zeros. Then,

det(C) = det(A) det(B).

Below, is a collection of properties of positive definite matrices; their proofs follow from

Theorem 1 on page 144, Theorem 3 on page 65 and Corollary 3 on page 51 of [33].
Properties 3.3.3. Let A be a symmetric positive definite n x n matriz. Then,

(i) Each eigenvalue \; of A is positive, for 1 < i < n. Also, if each eigenvalue of

some symmetric n X n matriz B is positive, then B is positive definite;
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(i) det(A) > 0;
(ii1) A is invertible.

The matrix resulting from interchanging the rows and columns of A and applying the

complex conjugate to each entry in the matrix A is called the conjugate transpose of A and

is denoted by A*. It is stated on on page 131 of [56] that det (A*) = det(A), where det(A)

denotes the complex conjugate of det(A).

Proposition 3.3.4. Any ellipsoid £ with centre a can be written as
£ - {xeE" | (Qx—a)x—a)<1}
for some positive definite matrixz ().

Proof. By definition £ = T'(B" [o, 1]) + a for some invertible linear transformation 7" : E* —

E™ and some vector a € E™. This means

E=T(@B"[0,1]) +a={T(x)+a|xeB"[o,1]}
={Tx) +a| &xx) <1}
={xeE" | (T"'(x—a), T "' (x—a)) <1}
={xeE" | (T*'T"'(x—a),x—ay <1}

— {xeE" | {(IT*) ' (x—a),x —a) < 1}

Let A € R™"™ be the matrix representation of the linear transformation 7'. Since T is
invertible, A=! € R™*" is the matrix representation of the transformation 7-! : E* — E".

Denote the matrix (AA*)™! by Q. First notice that @ is self-adjoint. Namely,

Q* _ ((AA*)_I)* _ (A—I*A—l)*
_ A_l*A_l

— A*flAfl _ (AA*)fl _ Q
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For all z # o,
(Qz,z) = <(AA*)*1Z,Z> = <A**1Aflz,z>
= <A_1*A_1z,z>
= (A2, A2y = |[A7'z)* = 0.

In fact, (Qz,z) = ||[A~'z|? > 0 since A~z # o. This follows from A~! being invertible.

Therefore, the matrix @ is positive definite and € = {x e E" | (Q(x —a),x —ay<1}. N

The n-dimensional volume of a set S < E™ is denoted as and defined by

vol(S)zL...del...dxn.

For a proof of following result, see Theorem 14.15 on page 520 of [20].

Theorem 3.3.5. Let S : E" — E" be a linear transformation and let B be a bounded subset

of E*. Then, vol (S(B)) = |det(S)| vol (B).

It follows from Proposition 3.3.4 and Properties 3.3.2 that

1

det@) = Gy

This together with the above theorem implies that the volume of any ellipsoid
E=T(B"[o,1]) +a

vol (B" [o, 1]) '
det(Q)

Proofs of the next two facts can be found, respectively, after Lemma 1.2 and Lemma 1.3

vol (€) = |det(T)| vol (B" [0, 1]) =

on page 205 of [7].

Lemma 3.3.6. Any ellipsoid € can be written as S (B" [0,1]) + a where a € E™ and S :

E™ — E" is a linear transformation which is induced by a positive definite matriz.
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Lemma 3.3.7. Let Q)1 and Q2 be n x n positive definite matrices. Then,

det (% (@1 + Q2)> > 4/det (Q1) det (Q).
Equality holds if and only if Q1 = Q-.

A function T : E® — E™ is an orthogonal transformation if (T (x),T (y)) = {(x,y), for
all x,y € E". The set of non-zero vectors {xX1,Xs,...,X,,} in E" is called an orthonormal set
if |x;| =1, for all 1 <4 < m and (x;,x;) = 0, for all ¢ # j. The following fact provides
a further characterization of orthogonal transformations; it is proved on pages 16 and 17

of [49].

Proposition 3.3.8. If T : E* — E" is an orthogonal transformation, then T is linear and
{T(e1), T(es),...,T(e,)} is an orthonormal basis of E", where ey, . ..e, denote the standard

basis vectors of E™.

The collection of properties of orthogonal transformations, below, rely on the previous
result. Their proofs can be found on page 17 of [49], page 161 of [38], page 119 of [43] and

page 328 of [43].

Corollary 3.3.9. Let T : E* — E™ be an orthogonal transformation induced by the matriz

P = [T(e1) T(es) ... T(en)]. Note that P 1s called an orthogonal matrixz. Then,
(i) |1T(x) = T(y)| =[x =yl for any x,y € E";
(i1s) PPT = I, = PTP implying that P~' = PT;
(iit) either det(P) =1 or det(P) = —1;

(iv) the rows and columns of P are an orthonormal basis for E".

The following well-known theorem, describes how to find an orthogonal basis of a subspace
S < E” from any basis of S; a proof of the Gram-Schmidt Orthogonalization Theorem can

be found on pages 51 and 52 of [47].
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Gram-Schmidt Orthogonalization Theorem. Let {x1,Xa,...,X,,} be a basis of a sub-

space S € E". Then, the set containing the vectors

fi =x
<X2a f1>
f2 = X9 — —f1
£
<Xm7 f1> <Xm7 f2> <Xm7 fm—1>
£, =x, — f; — fo—. .. ——f,
£ £ £ ?
is an orthogonal basis of S and the set of all linear combinations of {x1,Xa, ..., Xy} is equal
to the set of all linear combinations of {fi,fs,... £,}.

The theorem below characterizes the bases of E"; its proof can be found on pages 46 and

47 of [5].
Theorem 3.3.10. Any set of n linearly independent vectors in E™ is a basis of E™.

Two n x n matrices A and B are called similar if there exists some invertible matrix P
such that B = P"'AP. The lemma below describes some properties of similar matrices; its
proof can be found on page 229 of [43].

Lemma 3.3.11. If A and B are similar n x n matrices, then A and B have the same

determinant and eigenvalues.

An n x n matrix A is said to be orthogonally diagonalizable if there exists an orthogonal
matrix P such that PTAP is a diagonal matrix. The following theorem characterizes which

matrices have this property; its proof can be found on pages 329, 380 and 381 of [43].
Principal Axes Theorem. Let ) be a symmetric n x n matriz and let

R={xecE"| XTQX} = {xe E" | (x,Qx)}

be a quadratic form in the variables x1,xs,...x,. Then, Q) has an orthonormal set of eigen-
vectors Xy, ...,X, such that the orthogonal matrix
P = le Xy ... Xn]
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orthogonally diagonalizes Q. The quadratic form in terms of the new variables yi,vya, ..., Yn
fory = PT(x) is R = {y €E" |{y,PTAP(y))} = {y € E" | \iy1 + Aayo + ... + A\u¥n},
where Ay, ...\, are the eigenvalues of Q) repeated according to their multiplicities. Note that

the columns of P are called the principal axes of the quadratic form R.

The concept of length or norm of a vector developed in Chapter 2 can be extended to

matrices. The Frobenius norm is a map which sends a matrix A of E™*™ to the real number

= i N

i=1j5=1
a1 a2 ... Qip
. 21 A22 ... Q2 O .
Concatenate the columns of the matrix A = eF into a single vec-
_am1 Apy v - amn_
1T
tor A = [6111 a1 -ov Al ... Qip G2 ... Gmp| € E™. Notice that the Euclidean

norm of the vector A is equivalent to the Frobenius norm of the matrix A:

IA = /(A A) = ZZ ai)’ = | D0 lag* = [ Alls.
j=li=1 \¢:1j:1
Proposition 3.3.12. Let A e E™*" and x € E". Then,
| Ax| < Al g x|

and

|AllF < A/min (m,n) - ﬁafHA( x) ||.

The first property of the Frobenius norm in the above proposition is stated on page 280
of [40] and labelled as equation (5.2.5); the second is stated on page 133 of [23] and labelled

as equation (3.238).
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John - Lowner Theorem. There exists a unique ellipsoid £ of mazximal volume contained

in some convex body K < E". Furthermore,
ECKcné.

Proof of the John - Léowner Theorem.
Let K be an arbitrarily chosen convex body. It follows from Lemma 3.3.6 that for each
ellipsoid £ c K there exists some vector a € E" and some linear transformation S : E" — E"
which is induced by a positive definite matrix such that & = S (B" [0,1]) + a. Let X denote
the set of all pairs (S, a).

First, it will be shown that there exists a maximal volume ellipsoid inscribed in K.
Claim: X is compact in E"*+.
Let (S1,a1),(S2,as) € X be arbitrarily chosen. Then, S (x) + a;, .52 (X) + a; € K, for any
x € B"[o,1]. Since K is compact and thus, bounded, there exists a real number M such

that |S7 (x) + a1 < M and ||Ss (x) + as| < M. For any x € B" [0, 1],
| (81— 52) (x) + (a1 — az) | = [|S1 (%) + a1 — (52 (x) + az) |
then, by the triangle inequality and a property of the norm,

< S0 (%) +an| + [=1] ]Sz (x) + as

<M+ M=2M. (*)
Since linear transformations preserve the zero vector, it follows that
o€ S; (B"|o,1]),S52 (B"[o,1]).
Then, a; =o0+a; € S; (B"[o,1]) +a; € K and a = o+az € Sy (B" [0,1]) +a; € K. Thus,
la; — asf < M, (t)
since K is bounded. Notice that by Proposition 3.3.12,
[S1 = Sal|r < /- max |1(S1 = 52) (x)]
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then, by (»),

</n-2M = 2y/nM, (1)

for all x € B" [o,1]. Hence,

| (S1,a1) = (S2,a2) || = [ (S1 — Sa,a1 —ag) |

=[(S1—S82,0)+( o ,a;—a
——

€ En?+n
then, by the triangle inequality,
< (81 = 83,0)] + (0,21 — a5
then, by (1) and ()
,<2¢nM+ M =M (2y/n+1).

This means that X < E***" is bounded.

Let {(S;,a;)},.y be a convergent sequence whose elements belong to X < E**"; denote

T $n+1 oo Tp2_p
the point to which the sequence converges by x € E"+7. Let X =
Ty Top ... T2
T
and X = {xng 1 T2 +n] . Consider the sequence {a;};en. Suppose for a contradiction

that {a;};cy does not converge to x. This means that there exists € > 0 such that |a,—%X| > ¢

for all 7 € N. However,
e > [(Siai) —x| = [[(S; = X, 0) — (0,a; = %)
then, by the reverse triangle inequality,

> [[(Si — X, 0)| - (0,8, — %)| |

= |18 = X r — & — x|

%)



then, since |a; — x| > ¢ and by a property of the Frobenius norm,
> |0—¢| =,

for all ¢ € N. This is a contradiction. Thus, the sequence {a;};cy must converge to x.

It follows that there exists some N € N such that

|Si = X|p = [[(Si — X, 0)]

=|(S; —X,0) + (0,a; — x) — (0,8, — X) ||
then, by the triangle inequality and a property of the Euclidean norm,

< [(8i =X, 0) + (0,8, = x)| + |=1] |[(0,2; — %)

| (Si,a;) — x| + [a; — x|

for all © > N. Thus, the sequence of linear transformations of E" with positive semi-definite
matrices {S;},.y converges to X. Let z # o be arbitrarily chosen from B" [0, 1]. Then, there

exists N’ € N such that
Kz, 5 (2)) — (2, X (2))| = [z, (S; = X) (2))]
then, by the Cauchy-Schwarz inequality,
< |lz] - [ (Si = X) (2) |
then, by Proposition 3.3.12,
< |z)1S; — X|Flz] = |2]*.S; — X|
then, since {S;}, converges to X,

<z —— =,
VA
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for all # > N’. This means that the sequence of real numbers {(z, S; (z))},.y converges to
(z,X (z)) for any z # o from B"[o,1]. Since each S; is positive definite, it follows from
definition that each (z,S; (z)) > 0 for any z # o from B" [0, 1]. Therefore, (z, X (z)) > 0
for any z # o from B" [0, 1],by Theorem 2.6.4. Thus, X is a positive definite matrix.

It follows from Lemma 3.3.6 that X (B" [0, 1]) + x is an ellipse. However, it must be shown
that X (B"[o,1]) + x € K. Let z € X (B"[o,1]) + x be arbitrarily chosen. Then, there
exists b € X (B"[0,1]) such that z = b + bfz. Since X is positive definite, det(X) > 0.
Therefore, X is invertible. This means that X! (b) € B"[0,1]. Let s; = S; (X! (b)) for

all 7 € N. Notice that there exists some N” € N such that
I(si+a;)—(b—%)|=|(si +b)—(ai—%)|
then, by the triangle inequality,

< [si + b + Jai — x|
= IS: (X7 (b)) = X (X7 (b)) || + i — %]

= (Si = X) (X7 (b)) [ + |2 — %]
then, by Proposition 3.3.12,

< IS = X|e| X7 () | + a; — ]
then, since X! (b) € B" [o, 1],

< |85 = Xp + ai = %]

<fiios
for all i > N”. This means that the sequence of points {s; + a;},eny whose elements belong to
K converges to z. Since K is compact, it is also closed. Therefore, z € K by Theorem 2.6.3.
Thus, X (B"[o0,1]) + x € K. Hence, X is closed in E"*".

It follows that X is compact in E"°*". It follows from Proposition 3.3.1 that the func-

tion f : X — R with f((S,a)) = det(S) is continuous. Therefore, by Extreme Value
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Theorem f : X — R attains its maximum on X, say at (S’,a’). Hence, the ellipsoid
E = det(5) (B" [0,1]) + a’ has maximum volume among all ellipsoids inscribed in K.

Now, it will be shown that the largest volume ellipsoid inscribed in K is unique. Suppose
for a contradiction that this is not the case. In other words, suppose that the ellipsoids
& =51 (B"|o,1]) +a; and & = S5 (B" [0, 1]) + ay are distinct, maximal volume ellipsoids
contained in K. It follows that (Si,a;), (S, a2) € X.

Claim: X < E"*" is convex.
Let (S,a),(S,a’) € X and x € B" o, 1] be arbitrarily chosen. It follows that S (x) + a€ K

and S’ (x) +a’ € K. Now, let 0 < A <1 be arbitrarily chosen. Then,
AS(x)+a)+(1-)N)(S(x)+a)e K,

since K is convex. Hence, A (S,a) + (1 — ) (S’,a’) € X. This means that X is convex.
1 1
Let S = B (S1 +52) and a = 5 (a; + ag). Since X is convex, (S,a) € X. It follows that
the ellipsoid S (B" [0, 1]) + a is contained in K; denote it by &'. If S} # Sy, it follows from

Lemma 3.3.7 that
vol (&) = det (S) vol (B" [0, 1]) > vol (&1) = vol (&) .

This would contradict the assumption that the ellipsoids £ and & have the largest volume
among all ellipsoids inscribed in K. Thus, S; = S55.

In order for & and &, to still be distinct, a; # as. Recall from the definition of an
ellipsoid that S; is invertible. Recall from Lemma 2.4.6 that S; ' is a linear transformation.
To make this part of the proof more tractable, apply the linear transformation S;* to K.
By (i) of Properties 2.4.8, S;* (K) is still convex. It follows from Lemma 2.9.1 and The-
orem 2.9.2 that S;' (K) is still compact and S; ! (int(K)) is non-empty since int(K) # &
and S; ! is a function. In summary, S;* (K) is a convex body.

By Proposition 2.4.1, S;* (&), 57! (&) € S;' (K). Recall that for any ellipsoid £ € K,

vol (£) < vol (&) = vol (&) . (X
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It follows from Theorem 3.3.5 that
vol (S771(€)) = |det(Sy | vol (€)
then, by () and the fact |det (S7')| > 0,

< |det (S71)|vol (€1) = |det (S71)|vol (&)

= vol (S7" (&1)) = vol (ST (&2))

meaning that the ellipsoids S;* (€;) and S; ! (&) are the largest volume ellipsoids contained
in S;! (K). Moreover,

S;l (51) = S;l (Sl (Bn [O, 1]) + al)

= B"[0,1] + 5, (a1)
and likewise,

Sy (&) = 57181 (B"[o,1]) + ag)

=B"[0,1] + S;* (ay) .

By (vi) of Properties 2.3.1, (S 1)_1 = S; and therefore, S;! is invertible. It follows from
Lemma 2.4.3 and Theorem 2.4.5 that S; ' is a bijection. Therefore, if S7! (a;) = S~ (ay),
then a; = a,, which is a contradiction. Thus, S;*'(a;) # S;' (az) and hence, S;* (&) #
St ().

To simplify the notation, let K’ = S;* (K), & = S; (&), & = S7' (&), a) = S7' (a;) and
a, = S;! (ay). To summarize, & and &} are distinct closed balls of radius 1 centred at the
points &) and aj.

Notice that conv (€] U &) < K’. An ellipsoid £ will be defined so that £ < conv (€17 U &)).
The line passing through the points aj and a/, will be one of the principal axes of £’. Since
this line may not be one of the standard axes, use the Principal Axis Theorem to change the

coordinate system so that £’ is in standard position. First, notice that the vector aj — aj,
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like any vector in E" can be written as a linear combination of the standard basis vectors

of E": namely, a| —a, = e + poey + ... + ppe, for some pq, po, ...

i € R, Since

a) # aj, it follows that aj — a), # 0. This means that at least one of the terms of the sum

j1€1 + g€ + ... + upe, has a non-zero coefficient; select one of these terms and denote it

by p;€e;, where 1 < u; < n. Notice that the set {eq, ..

, , -
., €i_1,a] —a), €e1,...,€,} is linearly

independent and spans E”. Use the Gram-Schmidt orthogonalization method to turn the

/ /
set {e1,...,e;_1,a] —al e q,...

,€,} into an orthogonal basis of E™: Let

/ /.

Lo, vi)

[ vill?

Vi =€ i

_ <ei717 Vz’>
[vil®
<ei+17 Vz’>
[ vil®

Vi1 = €;—1 i

Vitl = €j41 — i

 {en, Vi)

[vil|?

vV, = €, i

Normalize each of these vectors and denote this orthonormal basis of E™ by

{(Vi,..., vl v ).

By (iv) of Corollary 3.3.9, that the matrix P = [Vfl

/
v;

v ] is an orthogonal

matrix. It follows from (7ii) of Corollary 3.3.9 that det(P) = +1 and therefore, P is invertible.

Finally, let

1
(L ag —ap) + 1)
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and let

Slz{er”

<<x—%(a’1+a’2)),A(x—%(a’1+a’2))><1},

where x = P(z) for some z € E™.
Thus, & < conv (€] U &) and hence, &' < K'.
Notice that

1
vol (&) = vol (B" [0, 1]) (1 + §Hag - a1||> :
: : 1 :
Since a; # ag, it follows that 1 + §Hag — ag| > 1. This means that
vol (£') > vol (B" [0, 1]) = vol (&]) = vol (&3).

However, this contradicts that £ and &) are the largest volume ellipsoids in K’. Thus,

a] = Ag.
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Chapter 4

Illuminating Convex Bodies in E* with Affine Plane

Symmetry

Let K be a convex body. The set of all boundary points of K is denoted by bd(K). Fur-
thermore, the set of all interior points of K is denoted by int(K’). A direction d is said to
illuminate x € bd(K) if

rynint(K) # &

where 1] = {z€ E" | z=x + Ad, A > 0} is the closed ray emanating from x with direction
d. The directions dy,ds,...,d, are said to illuminate K if each boundary point of K is
illuminated by at least one of these directions. The minimum number of directions required
to illuminate the entire boundary of K is called the illumination number of K.

In 1960, Boltyanski [15] and Hadwiger [27] independently published a conjecture, which

is equivalent to the following statement:
Fvery convex body K in E™ is illuminated by at most 2" directions.

This conjecture is, now, known as the Illumination Conjecture. Many partial results towards
a complete proof of the [llumination Conjecture have been obtained since 1960. For example,

Dekster [21] gave a rough but sound proof of the following theorem:

Theorem 4.1. If K < E? is convex body symmetric about a plane, then K can be illuminated

by at most eight directions.

The proof of Theorem 4.1 follows the case structure outlined below.
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relbd(B) has no sides

(§4.2.2)

By Mazur’s finite dimensional
density theorem, there exists a
smooth point p € relbd(B).
Since relbd(B) has no sides,

A(p)={a}-

relbd(B) contains a side
with midpoint p such
that A(p)={q}
(§4.2.3.1)

7

The point q is a
ground point
(§ 4.2.2.1)
The point q is a
cliff point
(§4.2.2.2)

For each side of
relbd(B), there exists
another side in relbd(B)
that is parallel to it

//"\

The point q is a
ground point
The point q is a
cliff point

Y

Each side of relbd(B)l
is non-degenerate /

/ There exists at least
one side of relbd(B)
that is degenerate

\ (§ 4.2.3.2)
There exists one
side of relbd(B)

By the John-Léwner theorem

there exists a maximum volume
ellipse, &€, such that £ € B C 2.
Apply a linear transformation to

K so that 2€ becomes a disc of
radius 1 in the T1Z2-plane.

Bisa
parallelogram
(§ 4.2.6)

\ B is a polygon

Figure 4.1
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B is a 2n-gon,
n>4

(§ 4.2.7)

whose length is less

than 1/2
(§4.2.4)

he sides o
relbd(B) have
length at least

1/2

\ 4

B is not a polygon
(§4.2.5.1)

Bisa
hexagon

(§ 4.2.8)




4.1 Preliminaries

A set S in E3 is affine plane symmetric about some plane H with respect to the line L if the

following two conditions are met:
(a) L meets H at exactly one point; and

(b) for any s € S, there exists a vector t € E® and a point s’ € S such that

s,seL+tandi(s+s)eHnS.

Note that the line L and the plane H need not be orthogonal.

Figure 4.2: The parallelepiped is affine plane symmetric about the plane H with respect to

the line L but H and L are not orthogonal.

Let x1, x5 and x3 denote the axes in E? and let e;, e, and e3 denote the standard basis
vectors of E3.

Due to the fact that the illumination number of a convex body is invariant under rotation
and translation, all affine plane symmetric convex bodies K in E? are hereinafter assumed,
without loss of generality, to be affine plane symmetric about the xix,-plane with respect
to some line L. Projections onto the xjxo-plane are simpler when L is orthogonal to the

xr1x2-plane. For convenience, apply the following transformation, 7', to K; it will ensure that
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the line L is orthogonal to the xyxs-plane. Let

T(el) =€
T(ey) = ey
T(u) = es,

where u is the unit vector with non-negative coordinates such that the line {\u | A € R} is

parallel to L. Notice that for any z € |3,
1 o _Swev
<u7 e3>

T(z)=10 1 —zzzzzi z.

1

<u, e3> 1

It readily follows that the transformation 7" preserves vector addition and scalar multiplica-

0 0

tion. Thus, T is a linear transformation. The illumination number of a convex body is also
invariant under any linear transformation. Therefore, affine plane symmetric convex bodies
K in E3 are hereinafter assumed to be affine plane symmetric about the z;xo-plane with
respect to a line L, which is orthogonal to the xxs-plane.

Let z = (21, 22, z3) be some arbitrary vector of E>. The map Pr : E* — E? x {0}, which is
called the orthogonal projection onto the xixo-plane, sends z to the vector Pr(z) = (2, 29,0)
in E? x {0}. The orthogonal projection of any subset S of E? onto the z;xs-plane is defined
to be

Pr(S) = {(s,e1) e1 + (s,e3) €2 | s€ S}.

If S € E" is a convex and affine plane symmetric set, then its orthogonal projection onto
the z1zo-plane is simply its intersection with the z;zo-plane, that is S n (E? x {0}). In
particular, the projection of K onto the z;xo-plane is equivalent to K n (E? x {0}) and will

be referred to as the base set, B, of K. The base set, B, has the following properties:

Properties 4.1.1.
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Proof.

(i) B is a convex body in the xixo-plane;

(i) relbd(B) € bd(K);

(i4t) relint(B) = Pr(int(K)).

(i) Recall that all affine sets are convex and closed. Thus, the zjxo-plane,
E? x {0}, is closed and convex. Moreover, K is closed and convex. Thus,
B is closed and convex since it is the intersection of two closed, convex sets.
The base set B is a subset of K, which is bounded. Thus, B is bounded. It
follows that B is convex and compact. Since K is a convex body, it follows
that int(K) # . This implies that K # . Moreover, K is affine plane
symmetric about the xixo-plane. It follows from the definition of affine plane
symmetry, given above, that a subset of K n (E? x {0}) = B is non-empty.
Thus, B # ¢J. Now, it follows that relint(B) # & (see Theorem 2.3.1 in [60]).
Furthermore, note that aff(B) = E? x {0}. In other words, B lies entirely in

E? x {0}. Hence, B is a convex body in the z;z,-plane.

Let x € relbd(B) be arbitrarily chosen. It follows, by definition, that
relbd(B) = cl(B)\relint(B)

where the sets relbd(B) and relint(B) are disjoint. This means x € cl(B)
and x ¢ relint(B). In (i), it was established that B is closed; therefore,

x € cl(B) = B < K. It follows from K being closed and Theorem 2.5.7 that
K = int(K) u bd(K)

where int(K) nbd(K) = . This means that either x € int(K') or x € bd(K).
Suppose for a contradiction that x € int(K'). Then, there exists a real number
r > 0 such that

B(x,r) € K.
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(iii)

It follows that

B(x,r)n (E* x {o} ) =< K n (E* x {o}) = B.

Notice that aff(B) = E? x {o}. It follows, by definition, that x € relint(B).
However, this is a contradiction. Therefore, x € bd(K), which implies that

relbd(B) < bd(K).
First, it will be shown that Pr (int(K)) < relint(B). Let x € Pr (int(K)) be
arbitrarily chosen. Then, there exists some k € int(K) € K such that

X = <k, e1>e1 + <k, 82> €s.

Since K is affine plane symmetric about E? x {o}, it follows that there exists
k' € K such that k' = k + pes for some € Rand 1 (k+ k') € B =K n (E* x

{o}). Notice that
1 / 1 / 1 /
§<k+k): §(k—|—k),e1 e + §(k—|—k),e2 €9
= <k + geg,e1>el + <k + geg,e2>e2
. 1% 1%
= <k, e1>61 + <k, e2> €9 + <§e3, e1>e1 + <§e3, 62> €9
= X.

Therefore, x € B. In (i), it was shown that B is closed. This means that
B = relint(B) u relbd(B). Note that relint(B) n relbd(B) = ¢J since the
relative interior and relative boundary of any set is disjoint. In particular, this
means that either x € relint(B) or x € relbd(B). Suppose for a contradiction
that x € relbd(B). In (ii), it was shown that relbd(B) < bd(K). Thus,
x € bd(K). By Corollary 2.10.11,

[k, k') < int(K).

However, x = 1 (k + k') € [k, k') < int(K). This is a contradiction. Hence,

x € relint(B), implying that Pr (int(K)) < relint(B).
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Finally, it will be shown that relint(B) < Pr(int(X)). Let x € relint(B) be

arbitrarily chosen. Then, there exists some real number r > 0 such that
B (x,r) n (E* x {o}) < B.

Recall that K is a convex body, which implies int(K) # . This means that
there exists k € int(K) < K. Also, recall that K is affine plane symmetric
about E? x {0}, meaning that there exists k' € K such that k' = k + pes for

some 4 € R and 1 (k + k') € B. Notice that

1
5 (k + k/) = <k + geg, e1>61 + <k + g63762>62

=(k,e;ye; +(k,esye; = Pr(k).

By Corollary 2.10.11, [k,k’) < int(K). Thus, Pr(k) € int(K). This means

that there exists a real number 7’ > 0 such that

B (Pr(k),r") € K.

/ /

Let z € B <Pr (k) + %eg, %) be arbitrarily chosen. Then, there exists some

real number 0 < ¢/ < 1 and unit vector u such that

’ ’
7Z = (Pl” (k) + %83) + :U“/ . %11

i (Lot (et y
2 fes + ]

The triangle inequality, properties of the Euclidean norm, the bounds of p/,

and the fact that e3 and u are unit vectors together imply that
0<[es+pul| <es| + pfuf =1+ 4 <2.

It immediately follows that z € B (k, 7). Therefore,

7.,/ 74/

B (PI‘ (k) + 563, E) cB (k, 7",) c K.
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This implies that Pr (k) + %63 € int(K).
If Pr (k) = x, then

/ /
<Pr (k) + %83, e1>e1 + <Pr (k) + %63, e2> e

= (Pr(k),e;ye; +(Pr(k), e e,
= Pr(k) = x.
This means that x € Pr(int(K)), which implies that relbd(B) < Pr(int(K)).

For the remainder of the argument, suppose that Pr(k) # x. The affine

combination of the vectors x, Pr (k) € E? x {o},

(5 e ) x+ (5 e ) P09,

can be re-written as

x4 Lr(k) eB(x.r) A (E2x {oY) = B
+2<!x—Pr(k)”> B(x,7) n (E* x {o}) = BS K.

Corollary 2.10.11 implies that

[Pr (k) + geg,x + g (%}:&‘;”» < int(K).

Recall that the Fuclidean norm is always non-negative. However,
|x —Pr(k)| >0

since Pr (k) # x. This implies that 2|x — Pr (k) || > 0. Recall that r > 0, so

r +2||x — Pr (k)| > 0. Notice that

o<mx_pumn=w+ﬂx—Pumm(ri§§E¥iQn>'

Recall that a positive number can either be written as the product of two

positive numbers or two negative numbers. Therefore,

2|x — Pr(k) |

> 0.
r+ 2|x — Pr (k) |
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Also, notice that

0<r=(r+2x—Prk)|) <7“—|—2HxiPr(k) H>

2[x —Pr(k) | )
r+2|x—Pr(k)| /)’

~ (2= Priio ) (1-

It follows that

xR
r+2|x — Pr(k) | ’
which implies that
- Pr(k)|
r+2|x —Pr(k)| )

Observe that the point

r i;;—Pl;f()k) || (X +3 (II;(:II:((:))I» HEET b () (Pr )+ ;’93>

in the half-open segment

0 e 5 (=) )

is equivalent to

2x — Pr (k) | . .
(r+%x—PMM\+T+MX—HGQ) *

/

T T rr
<_T+MX—PMMH+r+ﬂk—PM@|>mﬂg+r+2m—PMM%
rr’
=X+ r + 2|x — Pr (k) He?"

Therefore,
rr!
int( K
X Sk P € )

and

N rr! N N rr’
X es,e; )e X €3, ey )e
r+2x—Prk)| >/ r+2x—Prk)| /7

= (x,e1ye; +(x,e3)€e; = X.

Thus, x € Pr(int(K)). Hence, relbd(B) < int(K).
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An immediate consequence of (iii) from Properties 4.1.1 is that relint(B) < int(K).
Let z be any arbitrary vector in the xjxo-plane. The pre-image of the projection map
onto the zyzo-plane Pr=' : E2 x {0} — [E3 sends the vector z to the line { z + les | A € R}.

The pre-image of any set S lying completely in the x;z5-plane is defined to be

Proi(S) = S + {\e; | A e R}

={zeE’| (z,e1)e; +(z,es)es = Pr(z) € S}.

Let a and b be vectors in E®. The closed line segment between these two vectors is
denoted by [a,b] = {z € E* | z = a+ A(b—a), 0 < A < 1}. The open line segment
is denoted by (a,b) = {z € E* |z = a+ A(b—a), 0 < X\ < 1}. Finally, the half-open,
or half-closed, line segments between these two vectors is denoted by either [a,b) = {z €
E*|z=a+Ab—a), 0 <\ < 1} or (a,b]. The length of all the above line segments
is defined as |a — b|| = |[b — a|. If the vectors a and b lie on some planar curve C,
then [a, b]c, (a,b)c, [a,b)c, (a, b]c respectively denote closed, open and half-open, or half-
closed, arcs of the curve C' with positive orientation. Specifically, the reader will encounter
the notation [a, b]g, (a,b)p, [a,b)s, (a,b]s, by which the closed, open, half-open and half-
closed arcs of the relative boundary of B, relbd(B), with positive orientation are respectively
meant.

The closed halfspace Hy = {z € E? | (z,e3) = 0} represents the region on and above the
117o-plane. Likewise, the closed halfspace H_ = {z € E® | (z,e3) < 0} represents the region
on and below the x;xo-plane.

With the foregoing definitions in place, it is now possible give the following definitions,
which will be used extensively in the proof of Theorem 4.1. For any subset X of the base

set B of K,
Xy =Pr'(X)nbd(K)n Hy and X_ =Pr ' (X)nbd(K)n H_.
The wall of K, which we denote by W, is Pr—*(relbd(B)) n bd(K).
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Proposition 4.1.2. The three sets W, relint(B)4 and relint(B)—- are pairwise disjoint and
bd(K) = W v relint(B)4 U relint(B)_.

Proof. First, it will be shown that W, relint(B); and relint(B)_ are pairwise disjoint.
Suppose for a contradiction that the sets relint(B)4 and relint(B)_ are not disjoint.
This means that there exists an element x € E? such that x € relint(B)4 n relint(B)_. Tt

follows that x € H. n H_ n bd(K) and Pr (x) € relint(B). Notice that

HinH_={zecF’|{z,e35) >0} n{zecE’|(z,e3 <0}

={zeE’|(z,e5) =0} =E* x {o}.

Since x € E? x {o}, it follows that x = Pr(x). Therefore, x € relint(B) < int(K) and
x € bd(K). However, it follows Theorem 2.5.7 that int(K) n bd(K) = ¢, which is a
contradiction. Hence, relint(B)4 n relint(B)- = .

Suppose for a contradiction that the sets W and relint(B)4 are not disjoint. This means
that there exists an element x € E? such that x € W n relint(B)4. It follows that Pr(x) €
relbd(B) and Pr (x) € relint(B). However, by definition, the relative boundary and relative
interior of any set are disjoint, which is a contradiction. Hence, W N relint(B); = .

A very similar argument can be used to show that W n relint(B)- = .

To show that bd(K) = W u relint(B)4+ v relint(B)_, first show that W U relint(B)4 U
relint(B)_- < bd(K) and then show that bd(K) € W u relint(B)4 U relint(B)_.

Suppose that x € W U relint(B); U relint(B)_. Notice that W = Pr~' (relbd(B)) n
bd(K) < bd(K) and relint(B)y = Pr ' (relint(B)) n bd(K) n Hy < bd(K). Likewise,
relint(B)- < bd(K). It follows that x € bd(X’). Thus, Wu relint(B)4u relint(B)- < bd(K).

Suppose that x € bd(K) < K. Since K is affine plane symmetric, Pr(z) € Pr(K) = B.
Recall from Properties 4.1.1 i that B is closed. It follows that B = relbd(B) u relint(B),
where the sets relbd(B) and relint(B) are disjoint. Then, either Pr(x) € relbd(B) or
Pr(x) € relint(B).

Case 1: Suppose Pr(x) € relbd(B).
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It follows, by definition, that x € Pr—! (relbd(B)). Also, recall that x € bd(K), by supposi-
tion. This means x € W. Therefore, x € W U relint(B)4 U relint(B)-_.

Case 2: Suppose Pr(x) € relint(B).

It follows, by definition, that x € Pr™* (relint(B)). Again, x € bd(K), by supposition. Note
that x € H, or x € H_. Tt follows that if x € Hy, then x € relint(B)4 and if x € H_, then
x € relint(B)_. Thus, x € W U relint(B)4 v relint(B)_.

Together Case 1 and Case 2 imply that bd(K) € W U relint(B)4 U relint(B)-_. |

For any subset Y of relbd(B), the wall through Y, which we denote by Wy, is Pr='(Y") n
bd(K). A vector x € relbd(B) is called a ground point if Pr '(x) n bd(K) = {x}. If a
vector x € relbd(B) is not a ground point, it is said to be a cliff point. In other words,
x € relbd(B) is a cliff point if Pr~!(x) n bd(K) is some non-degenerate line segment. Often,

this non-degenerate line segment will be referred to as the cliff at x and will be denoted by

[x~,x"].

The point x € relbd(B) is a ground point. Each side The point x € relbd(B) is a cliff point. All points

of B is degenerate. on the relative boundary of B are cliff points
Figure 4.3

Let S be some convex set and let H be some supporting hyperplane of S. The set H n .S
is called an exposed face of S. Any exposed 1-dimensional face of B in E? x {0} is called a

side of B. Informally, a side is a non-degenerate closed segment in relbd(B), which is not a
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part of another such segment.

Proposition 4.1.3. Let Y < relbd(B) be a closed line segment. Then Wy is a compact,

convex set which is symmetric about Y .

Proof. First, it will be shown that Wy is symmetric about Y.

Let x € Wy be arbitrarily chosen. Recall that Wy = Pr~' (Y) n bd(K). It follows that
x € Pr™' (V). By definition, Pr(x) € Y. Also, notice that Wy < K. This means that
x € K. Since K is affine plane symmetric about the xjxzs-plane, there exists x’ € K such

that x’ = x + pes, for some p € R and

%@+xqu. (4.1)

Substitute X' = x + pes into (4.1) to get that
1 / o
§(x—|—x)=x+§e3. (4.2)

1
It follows from the fact that 3 (x + x') € E? x {0} that

%@+Xq:<%@+x%m>q+<%@+x%@>@

= <x + geg,e1>e1 + <x + geg,e2>eg

= (x,en)en + (x,ex)es + o (esen)er + 4 (enen)es

and by (4.2)

=(x,e;)e; +(X,ey)e; = Pr(x).

Therefore, £ (x +x/) €Y.

Since K is closed, it follows from Theorem 2.5.7 that K = bd(K') u int(K) where the
sets bd(K) and int(K) are disjoint. This means that either x’ € bd(K) or x’ € int(K).
Suppose for a contradiction that x" € int(K'). Then, it follows from Theorem 2.10.10 that

[x/,x) < int(K). However, 1 (x + X') € [x/,x) and it was shown above that 1 (x +X') e Y <

relbd(B) < bd(K), which is a contradiction. Thus, x" € bd(K'). Note that for some p € R
x' =X+ pes
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I P
=X+ 2€3+ 263

=Pr(x)+%e36Y+{)\e3|)\6R}=Pr’1(Y).

Hence, x' € Pr™' (Y) n bd(K) = Wy. Therefore, it has been shown that Wy is symmetric
about the closed line segment Y.

Second, it will be shown that Wy is compact.
Recall that Pr (Y) = Y + {)les | A € R}. Lines are affine, so it follows from (i) of Theo-
rem 2.5.1 that {\e3 | A € R} is closed.
The closed line segment Y is closed in E3. Let y1,y, € Y < relbd(B) € B < K be arbitrarily
chosen. Recall that K is a convex body, which implies that K is bounded. It follows that
there exists M € R such that ||y; — y2| < M. Therefore, Y is bounded.
It follows by Theorem 2.8.4 that Y + {Ae3 | A € R} = Pr" (V) is closed.
By definition, bd(K) = cl(K) n cl(E"\K). Recall that the closure of any set is closed. It
follows by (%) from Theorem 2.5.1 that bd(K) is closed.
Apply (4i) from Theorem 2.5.1 again to get that Wy = Pr (Y) n bd(K) is closed.
Let wq, wy € Wy be arbitrarily chosen. It follows that wy, wy € bd(K) € K. It follows that
|[wy — wa|| < M. This means that Wy is bounded.
Hence, Wy is compact.

Finally, it will be shown that Wy is convex.
Let x,z € Wy and 0 < pu < 1 be arbitrarily chosen. It follows that Pr(x),Pr(z) € Y.
Recall that line segments are convex; therefore, Y is convex. This means that uPr(x) +

(1 — p) Pr(z) € Y.Since Wy is symmetric about Y, there exist fi, i € R such that
Pr(x) = x + ie3 and Pr(z) = z + [ies.
Then,

px + (1= p)z = p(Pr(x) — fieg) + (1 — p) (Pr(z) — jiey
= pPr(x) + (1 — p) Pr(z) + (- — fres — pjres) es
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eY +{les| xeR}=Pr (V).

Since K is convex and x,z € Wy < bd(K) < K,it follows that ux + (1 — p)z € K. Again,
recall that K = int(K) u bd(K) where the sets int(K) and bd(K) are disjoint. It follows
that either ux + (1 — )z € int(K) or pux + (1 — p) z € bd(K).

Suppose for a contradiction that ux + (1 — u) z € int(K).

Since px + (1 —pu)z € Pr(Y), it follows that Pr(ux + (1 — u)z) € Y. Recall that Y <
relbd(B) < bd(K). Also, recall that K is affine plane symmetric. In particular, this means

that there exists w € K such that

%(w—k,ux—k(l—u)z):PT(NXJF(l_M)Z)'

It follows from Corollary 2.10.11 that
[ux + (1 — p) z,w) < int(K).

Together, these imply that Pr(ux + (1 — p)z)) € [ux + (1 — p) z, w) < int(K). But, this is
a contradiction because Pr (ux + (1 — p) z) € bd(K). Therefore, ux + (1 — p) z € bd(K).

Hence, ux + (1 — pu) z € Wy, which implies that Wy is convex. [

Given an arbitrary set S, a hyperplane H is said to support S at the point s if the set S
is completely contained in one of the closed halfspaces determined by the hyperplane H and
if se Hn cl(S). Let x € relbd(B) and let ¢ be a supporting line of B at x in the x;zo-plane.
Each element belonging to ¢ n relbd(B) is called an antipode of x where ¢ is a supporting
line of B, which is parallel to and distinct from ¢. The complete antipode of x, which we

denote by A(x), is the set of all antipodes of x.
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Figure 4.4

4.2 Proof of Theorem 4.1

4.2.1 Initial Observations

The following two results are useful in proving Theorem 4.1. In particular, Lemma 4.2.1.2
is required in sections 4.2.4, 4.2.7.3 and 4.2.8.3. The proof of Lemma 4.2.1.2 relies, in part,

on Lemma 4.2.1.1. Moreover, Lemma 4.2.1.1 will be needed in 4.2.8.3.

Lemma 4.2.1.1. Let k € relbd(B) be a cliff point with cliff [k=,k™]. Suppose that deR3
1s a direction with the property that Pr(a) illuminates k and <a, e3> < 0. Let p; € E? such
that Tl§+ N (E? x {0}) = {p1}. Let po € E? be chosen such that k is the midpoint of the line

segment [p1, p2]. Namely, po = p1 + 2(k — p1). Note that by convexity ps ¢ B.
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k+

ri1ro-plane

0k*

Figure 4.5

Also, note that the two supporting lines of B through ps may support B at more than
one point. Let the supporting line £ and c € { nrelbd(B) be chosen such that the orientation
of conv{k, pa,c} is positive and |c — pa| = inf{|jr — pa| | r € £ nrelbd(B)}. Then, every

x € [k, ¢)p is illuminated by d.

Proof. By assumption, rlgr(a) Nint(K) # . So, let w € rgr(a) N int(K). In other words,

~

w = k + APr(d) € int(K) for some A > 0.

It is useful to note that since T? ~ (E? x {0}) = {p1},
p1 = Pr(p;) = Pr(k™ + ¢d) = k + Pr(d) (4.3)

for some ¢ > 0. Also, (k*,e3) = —¢ <€1, e3>, which implies (k™,e3) = ¢ <a, e3>. Observe
~ 1 1
that by re-arranging (4.3), Pr(d) = — (p1 — k) = —(k — p2).
¥ ¥
It is also useful to note that d = o(p; —k™) for some ¢ > 0. Furthermore, p; —k* =k~ —p,

since conv{k™, p;, k™, pa} is a parallelogram.
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P1

P2

Figure 4.6: The diagonals bisect each other, therefore conv{k™, p;, k™, p2} is a parallelogram.

Suppose x = k.
Since k™ € [k, k] € bd(K) < K, Lemma 1.1.8 in [51] implies that (k=, w] € int(K) .
Claim: The ray rg intersects the line segment (k=, w). In other words, uk~ + (1 — u)w € rg

for some 0 < p < 1.

b
|
=
=3

Figure 4.7
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A
Let p = m Since A, ¢ > 0, it follows that g > 0. Furthermore, A + ¢ > \. Therefore, it

also follows that p < 1. Consider the following,

A~

pk™ + (1 —p)w = pk™ + (1 — p)(k + APr(d))
—k+ A1 —p)Pr(d) + p(k™ — k)
—k+ A1 —p)Pr(d) + p{k ,esyes

=k + A(1 = p)Pr(d) + pe <a,e3>e3
¥ 4 A2\ /3
—k+\|——)Pr(d ) {d
! (A+¢)I()+<A+w><’%>%
A ~
=k+op(——]d
¢<A+¢>

Hence, pk™ + (1 — p)w e (k= ,w) n rg. In other words, pk™ + (1 — p)w € int(K) n rg.
Thus, d illuminates k.

Let x € (k, c)p be arbitrarily chosen.

Case 1: Suppose that [k, c]p is a side of B. In other words, suppose that [k, c]p = [k, c].
This means x € (k, c).

Claim: conv{k™, k", c} < bd(K).

Note that k = %k_ + %k* + 0 ¢, which means k € conv{k~, k™, c}. Thus,
[k, c] < conv{k™, k", c}.

Note that by Proposition 4.1.3, Wk ¢ is a compact convex set in the plane Pr—([k,c]). Also,
notice that k=, k™, c € W . These two facts together imply that conv{k™ k™, c} € Wi q.
By definition, Wik ¢ € bd(K). Hence, conv{k™, k™, c} < bd(K).

Note that x = 'k + (1 — n)c for some 0 < ¥ < 1. Let f = n’k™ + (1 —7n')c and e =

nk™ + (1 —n')c. As defined, x = 1f + fe.
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Figure 4.8

A~

Recall from above that w = k + APr(d) € int(k) for some A > 0. Applying Lemma 1.1.8

in [51] again, results in [w,c) € int(K). Observe that
n'w+ (1—1)c =1/ (k + APr(d)) + (1 — 7)c

=n'k+ (1 —7")c+n'APr(d)

— X + 17/ APr(d).

X

me@ In other words, n'w + (1 —

where A > 0. This implies that n'w + (1 —7')c € [w,c)nr
n')c € int(K) n r;r(
int(K). The same method used in the first part of the proof will be used now to show

a)- Using Lemma 1.1.8 in [51] yet again, results in (e,n'w + (1 —7')c] €

rin(e,n'w+ (1—-1n')c] # J.
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f
X n'w+(1-1)c T%r(&)
e ,’,g

Figure 4.9

Recall that (k—,e3) = g0<a, e3> for some ¢ > 0. Note that |k~ — k|| < ||le — x| or in other
n'A
Yo +nA
7o >0, & > 0. Furthermore, 7'¢ +n'A > '\, which implies ¢’ < 1. Consider the following,

words, (e —f) = 7/(k™ — k) where 0 < v/ < 1. Let ¢ = Since A > 0 and

A~

fe—(1=&)n'w+ (1 —n)c]=¢e+ (1-&)[x+nAPr(d)]
—x+&(e—x)+ (1— &)y APr(d)

= x+ €k — k) + (1 - ) APH()

=x+¢&7(k ,esyes+ (1 — &)/ APr(d)

A~

=x+&7 <a, e3> ez + (1 — &)y APr(d)
/

=x+ ﬁa

Hence, &'e—(1—&)[w+(1—1')c] € r*dn (e, ' w+(1—n')c]. This means that r*dnint(K)

&. Thus, d illuminates x.

Case 2: Suppose that [k, c|p is not a side of B. Namely, suppose that [k, c|p # [k, c].

Note that x € conv{k, py,c}. This means that there exists 0 <o < land 0 <o’ <1 -0

such that x = ok + o’'c+ (1 — 0 — 0’)pa.
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P2

Figure 4.10

Claim: T;r(&) N (k,c) # .

Notice that (1 — o — ¢') - ¢ > 0. Now, observe that

A~ ~

x+[(1-—0c—0)-¢p]Pr(d)=ck+o'c+(1—0—0)pa+[(1—0—0)-¢]Pr(d)
=ok+oc+(1—-o—0d)pa+(1—0—-0")(k—p2)
=ock+oc+(1-0—-0)k

=(1-0)k+'c.

Since0 <o’ ' <1—0<1,(1-0)k+o'ce r?r(a) N (k,c).

Let f = (1 —o’)k™ + o'cand e = (1 — 0/)k~ + o’c. As defined, (1 —o')k + o’c = 1f + fe.
Claim: (e, f) < int(K).

First, it will be shown that (1 — o’)k + o’c € int(K).

The supposition that [a,b] is not a side of B means that [a,b] & relbd(B). Since a,b €
relbd(B) by assumption, it follows that (a,b) & relbd(B). Since B is convex, the line
segment [a, b] is contained in B. This implies that (a,b) < relint(B) due to the fact that
B = relbd(B)urelint(B) where relbd(B)nrelint(B) = . Thus, (1—0’)a—ac’b € relint(B) <
int(K).

Since a~,a*,b e bd(K) € K and K is convex, it follows that [a=,b] € K and [a*,b] < K.
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Thus, e = (1 —o’)a” +0'be K and f = (1 —o’')a” + ¢'b e K. By Lemma 1.1.8 in [51],

(f,(1—0")a+o'b] < int(K) and [(1 —o')a+ o’'b,e) < int(K). Hence, (f, (1 —0o")a+o'b] U

[(1—-0)a+oc'b,e) = (f e) =(ef) < int(K).

Since 1 —o — o’ > 0,
x+(1-c—0c)Yd=ck+cct+(1—0c—0)ps+(l—0c—0)k —ps)

=ok+oc+(1—0—-0)k”

:(1jy)KLﬂﬂk+dd+(Lli:i)ﬁl—dm‘+dd

1—-o'

=(1Ud)ﬁkﬂﬂk+dd+(1—1Ud)Kl—dﬁ_+dd

erin((1-o)k+oa'ce).

Hence, d illuminates x. [ |

Lemma 4.2.1.2. Let [u,v] € relbd(B) be a side and suppose that relint(B) contains a

segment [n,m] such that m—n = 2(v—u). Then Wy can be illuminated by two directions.

Proof. Let m and n denote the endpoints of the line segment completely contained in
relint(B) which is twice as long and parallel to the side [u, v] € relbd(B) where the points
u,v,m and n follow each other in this order when starting at the point u and travelling
counter-clockwise.
Suppose Wy = [u, v].
Claim: The directions d; =  (n+ m) — u and d2 = } (n + m) — v illuminate the entire
line segment [u, v].
Let z € [u, v] be arbitrarily chosen.If z € [u, 3 (u+ v)], then z = p (3 (u+v)) + (1 — p)u
for some 0 < p < 1. Clearly,

z+dy = g(u+v)+(1—,u)u+%(n+m)—uerﬁl.
Moreover,

z—l—dlzg(u+v)+(1—p)u+—(n+m)—u
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2 2
1
=%(m—n)+§(n—|—m)

(1 1 u
—(2 4>n+<2+4)m
Since 0 < p < 1, itfollowsthat0<%+%<1. Thus,
L_nw n + 1+,u me [n,m| C intB < int(K)
27 14 271 T = TG = TR

In other words, 73, N int(K) # . So, d; illuminates z.

Similarly, if z € [ (u + v),v], then z = p (5 (u+v)) + (1 — p)v for some 0 < x < 1 and

S

0 1
=-—5(v-u+5m+m)+(1-1v
:g(u+v)+(1—,u)v—|—%(n—i—m)—verﬁlmint(K).

So, dy illuminates z.
Suppose now that Wyuv) # [u,v].This means that [u, v] contains cliff points. Let k €

[u, v] be a cliff point chosen so that
|k* — k™| = max{[[f" — £~ | for all cliff points f € [u, v]}.

Let p; € [n, m] be chosen such that p; —n = 2(k —u) and m — p; = 2(v — k).
Claim: The directions d* = (p; —k) — (k™ —k) and d= = (p; —k) — (k™ — k) illuminate
Whav-

Suppose that u and v are cliff points. This means that all points in the interval [u, v] are

cliff points, by convexity. Let w € (Wuyv)) . be arbitrarily chosen. Clearly, |[w — Pr(w)]|| <
kT — k|. Equivalently, (k* — k) = (k — k™) = ¢o(w — Pr(w)) for some ¢ > 1. Also, note
that Pr(w) = yu+ (1 —+/)v for some 0 <7’ < 1.

1
Let A = —. Since ¢ > 1, it follows that 0 < A < 1. [f we (W[uvv])y then
2

w4+ Ad") =w+ A[(p1 — k) — (k" — k)]
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=w+A[pl—§<pl—n>—u—¢<w—Pr<w>>
= Pr(w) ~ Au+ 3 (py + )

— (1= A)Pr(w) + APr(w) — Au + % (p1 + n)

= (L= A)Pr(w) + A(u(l ~7)v —w) + 5 (s + )
= (1= A)Pr(w) + A1 =9)(v—u) + 5 (p1 +n)

DO | >

:(1—)\)Pr(w)+M(m—n)+%(pl+n)

=(1—\)Pr(w) + % (p1 +Yn+ (1 —~")m)
= (L= Pr(w) + 5 (pu 70+ (1 F)py + (1 +)m)

=(1=X)Pr(w)+ A <%/ (p1 +n) + (1 _27/)

(p1 + m)) ey, nint(K).

Namely, it has been shown that the direction d* illuminates w.

Ifwe (W[u,v])_, the exact same procedure shows that w is illuminated by the direction d~.
Now, suppose that either u or v is a ground point. Without loss of generality, let u be

a ground point. Also, let p; = p; + 2(k — py).

Sub-claim: The points ps, u and n are collinear.

Consider the line through the points p and n, Aps + (1 — A\)n. When A\ = %, the result is

k — % (p1 — n) = u, which shows ps, u and n are collinear.

Note that since u € relbd(B) and n € relint(B), ps ¢ B by convexity. Let £ be a supporting

line of B passing through the point py such that u € [k, c)p where ¢ € £ N relbd(B) and

|c—p2| = inf{||[s—p2| | s € £nrelbd(B)}. Such a c € relbd(B) exists since [n, m| € relint(B).

Notice that conv{k, pa, c} has positive orientation. Furthermore, Pr(d*) = p; —k illuminates

k since k + Pr(d*) = k+ (p1 — k) = p1 € rd” nint(K). Thus, d* illuminates u by Lemma

4.2.1.1. [ |

4.2.2 First Major Case of Theorem 4.1
In this case, suppose that relbd(B) has no sides.
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Note that by Theorem 2.2.4 in [51], there are only countably many singular points in the
boundary of K and since relbd(B) < bd(K), there are only countably many singular points
in relbd(B). In other words, smooth points are dense in bd(K) and relbd(B).

Let p € relbd(B) be an arbitrarily chosen smooth point. By definition, the supporting
line of B in the xjzo-plane at p is unique. Denote this supporting line by ¢. Since B is a
convex body in the zzo-plane, it follows from Theorem 6 in [19] that there exists exactly one
other distinct supporting line of B in the xjzo-plane, parallel to £. Call this supporting line
¢'. Since B has no sides, it follows that the supporting line ¢’ supports B at a single point,
q. Thus, the complete antipode of p contains only a single point. Namely, A(p) = {q}.

Either the point q is a ground point or it is a cliff point. In examining these two
possibilities, the first major case of Theorem 4.1 will be split into the sub-cases 4.2.2.1 and

4.2.2.2.

4.2.2.1 Suppose that q is a ground point.

A summary of the proof for this sub-case is described here with an explanation of how each
Proposition and Lemma fit together to make the proof. First, it is shown that q is illuminated
by the direction p —q. The proof of Proposition 4.2.2.1.1 does not make use of the fact that
relbd(B) has no sides and therefore, can be used again in Proposition 4.2.3.1. Second, an
open set on the boundary of K containing q is found and it is shown in Proposition 4.2.2.1.2
that every element of this open set is also illuminated by the direction p — q. The open set
on the boundary of K containing q is denoted by U (q). Lemma Lemma 4.2.2.1.3 shows that
there exists a closed set slab [Pr~"(£,),Pr~"(¢')] n bd(K), for some line ¢, strictly between
and parallel to the supporting lines ¢ and ¢, that is contained by U (q). Then, Propositions
4.2.2.1.8 and 4.2.2.1.9 show that there exist two points, a and b, of relbd(B) that belong
to U (q) and that lie on the line ¢,. Finally, Lemma Lemma 4.2.2.1.12 shows that the
remaining part of the boundary, bd(K)\U(q), is illuminated by the six directions  (q + a)—

b S(a+b)—a (1- %) (Sa+a)~b) = Tegand (1-24-2) (§(a+b)—a) + Tey,
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Note that Lemma Lemma 4.2.2.1.12 never makes use of the fact that relbd(B) has no sides

and therefore, will be used in all other cases with the points p and q carefully chosen.
Proposition 4.2.2.1.1. The point q is illuminated by the direction p — q.

Proof. Recall from above that q € ¢'. It follows from the fact that the line ¢ is parallel to
but distinct from the line ¢ that there exists some t # o such that ¢/ = ¢ + t. Since B is
convex, [p,q] € B. Suppose for a contradiction that [p,q] < relbd(B). It follows from
Theorem 14 in [39] that there exists a supporting line of B which contains the closed interval
[p,q]. Since p is a smooth point, the support line ¢ is unique. This means [p,q] < /.
Therefore, q € ¢. This is a contradiction. Hence, (p,q) < relbd(B), since p,q € relbd(B).
Recall from Properties 4.1.1 that B is closed and its relative interior is non-empty in the
x1xo-plane. It follows that B = relint(B) u relbd(B). Also, recall that the relative interior

and the relative boundary of any set are disjoint. Thus, (p,q) € relint(B) < int(K). So,

1(p+a)=qg+3(p—q)erg nint(K). u

Proposition 4.2.2.1.2. There exists an open neighbourhood of the ground point q on the

boundary of K that is illuminated by the direction p —q. Denote this open neighbourhood by

U(q).

Proof. First, the set U(q) will be explicitly defined. In Proposition 4.2.2.1.1, it was shown
that £ (p + q) € int(K). It follows from definition that there exists a real number x > 0
such that B(3 (p + q) , x) = K. This open ball around 3 (p + q) will be used to generate an
open l-cylinder, which we will denote by C. Let C =B (3 (p+q),x) + {\Ma—p) | Ae R},
where the set {A\(q — p) | A € R} is the line passing through the origin and lying parallel to
the vector q — p. Now, let U(q) = C n B(q, x) n bd(K).

Next, it will be verified that U(q) contains q and that U(q) is open on the bd(K).
Begin by observing that the set C'n B (q, x) n bd(K) can be simplified to B (q, x) n bd(K).
This follows from the fact that C' n B(q, x) = B(q, x), which follows from the fact that

B(q, x) € C. To see that B(q, x) € C, start by letting x € B(q, x) be arbitrary. This means
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that there exists a unit vector u and a scalar 0 < 7 < 1 such that x = q + nxu. The vector
x can be re-written as £ (p + q) +nxu+ 3 (q — p) where £ (p + q) +nxue B (3 (p+q),x)
and £ (q — p) € {A(q — p) | A € R}. Therefore, x € C.

It is now straightforward to check that U(q) contains q. It follows from definition that
q € B(q, x). From the way q was defined, q € relbd(B) and relbd(B) < bd(K).

It follows from Theorem 1.7.1 in [60] that the open ball B(q, ) is open in E3. Equipping
bd(K) with the subspace topology Trax) = {V mn bd(K) | V is open in E*}, it can be seen
that the set U(q) = B(q, x) n bd(K) € Toax) and therefore, is open in bd(K).

Finally, it will be verified that U(q) is illuminated by the direction p — q.

Let y € U(q) be arbitrarily chosen. Then, there exists a unit vector v and a scalar 0 < pu < 1

such that y = q + puxv. The element y + 5 (p — q) of the ray r3_, can be re-written as
2 (p+4q) + pxv. Note that 2 (p+q) + pxveB(2(p+aq),x) since 0 < p < 1. It follows

that y + 5 (p — q) € r}_q N int(K). u

Note that for any line ¢ in the xqzo-plane, the set Pr! (KT) is a plane in E3. The set
(Wg/melbd(B) + x'B (o, 1)) is called the outer parallel domain of Wy ~ema(s) at distance x' > 0
and represents the the open neighbourhood on the bd(K) containing Wprena(s) that can

be illuminated by the same direction or directions as Wy ~rema(p)- In this particular case,
(WZ!mrelbd(B) + x'B (o, 1)) N bd(K) =U(q)

and it was verified in Proposition 4.2.2.1.2 that U(q) is an open neighbourhood on bd(K)
that can be illuminated by the direction p — q. The following lemma is proved in a general
way, not using any of the assumptions particular to this case, so that can be used in all

future cases; namely, the lemma holds for 0 < dim (aff (Pr (') n K) ) < 2.

Lemma 4.2.2.1.3. There exists a line £, strictly between and parallel to ¢ and ¢' in the

r129-plane such that
slab [Pr='(£,), Pr="(¢)] n bd(K) S (Werrebacs) + X'B (0,1)) nbd(K).
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Proof. Since q € relbd(B) < B = cl(B), it follows from Theorem 2.6.3 that there exists a
sequence of points in B converging to q. Denote this sequence by {s,}.en. For each element
s, of the sequence {s,},cn, let £, be the line passing through the vector s, € B which is
parallel to the lines ¢ and ¢'; this creates a sequence of parallel lines which is denoted by
{;} nen. For each line ¢,, from the sequence {¢, },cn, take the pre-image of the projection map
onto the z;xy-plane of £,; this creates a sequence of hyperplanes {Pr" (£,)}nen. Intersect
the convex body K with each hyperplane Pr~' (£,) from the sequence {Pr' (£,)},en; this
produces the sequence {Pr™' (£,,) N K},en.

Using the Blaschke Selection Theorem, it will be shown that
§ (Pr'(l,) n K,Pr ' ({) nK) -0

as n — o0. In order to be able to apply the Blaschke Selection Theorem later, one must
verify that the set Pr~" (¢) n K and every element of the sequence {Pr™' (£,) n K}y are
compact, convex and non-empty sets.

Hyperplanes are affine and thus, convex. Of course, recall that K is also convex. These
facts combined with Theorem 2.10.2 imply that Pr~* (#) n K and every element of the
sequence {Pr' (£,) N K} ey are convex.

By Theorem 2.5.1, hyperplanes are closed. Thus, Pr~!(¢#') and every element of the sequence
{Pr'(£,,) }nen are closed. Recall that K < E" is compact. Thus, K is closed. This together
with (ii) of Theorem 2.5.1 means that Pr~'(¢) n K and every element of the sequence
{Pr='(¢,) n K},en are closed. Moreover, K contains Pr—1(¢') n K and every element of
the sequence {Pr~'(¢,) n K}nen. Hence, Pr™*(¢') n K and every element of the sequence
{Pr='(¢,) n K},en are compact by Theorem 2.8.2.

By definition, it follows that for each element Pr~'(£,) n K of the sequence {Pr™*(£,) " K} pen,
sn € Pr(0,) n K with s, € {S,}new Where {s, }nen is the sequence of points belonging to B
that converge to q. This means each element of the sequence {Pr_1 (£,) N K }pen 18 non-empty.

Also, {q} € Pr™!(#) n K and therefore, Pr™(¢') n K # (.
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Sub-Lemma 4.2.2.1.4. § (Pr'(¢,) n K,Pr (') n K) — 0 as n — 0.

Proof. By the The Blaschke Selection Theorem, there exists a subsequence, denoted by
{Pr7' (¢,,) N K}ien, of the sequence {Pr™' (£,) n K},en that converges to Pr™! (¢) n K.
Specifically,

§ (Pr ! (bn,) n K,Pr ' () nK) >0 asi— . (4.4)

This means, by Theorem 3.1.6, that

(i) each point in Pr—' (#') n K is the limit of a sequence {h, },y with h, €
Pr!(¢,,) n K, and

(i) the limit of any convergent sequence {hy, }jen with hy, € Pr’l(énij) Nn K

belongs to Pr=! (¢/) n K.

Let h e Pr™!(¢) n K be arbitrarily chosen. It follows from (i) above that there exists a
sequence {h,, };en with h,, € Pr7'(¢,,) n K that converges to h.

A sequence, which contains the subsequence {h,, };cn, will be created as follows.
If ny > 1, then add the points h,, to the sequence {h,, },cn so that the indices of this new
sequence form a strictly increasing sequence of positive integers and which satisfy {h,,} =
[p.hy,) N (Pr'(€,) n K) with Pr'(4,,) n K € {Pr"(£,) N K }pen, for all 1 <m < ny.
For all n;, < m < n;41, add the points h,, to the sequence {h,, },en so that the indices of
this new sequence form a strictly increasing sequence of positive integers, where {h,,} =
(hn,, hy,,,) 0 (Prt(6,) n K) with Pro'(6,) n K € {Pr(€,) N K }pen.

From each element Pr~*(¢,,) n K of {Pr'(¢,) n K}ey there is a corresponding element
of this new sequence: either h,, comes from the subsequence {h,, }icy, if there exists i € N
such that m = n;; or h,, = (1 — »)p + »h,, for some 0 < » < 1,if 1 < m < ny; or
h,, = (1 — »)h,, + »h,, for some 0 < » < 1, if n, < m < ny, given that ng is the
smallest positive integer satisfying n; < m < nj such that there exists at least one element
h,, € (h,,,h,,) from Pr='(¢,,) n K, which belongs to {Pr~'(£,) n K },en but does not belong

to {Pr*({,,) N K}ien. Therefore, the new sequence may be denoted by {h,},ex.
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Due the fact that {h,, };en converges to h, it follows that for all ¢’ > 0 there exists a real

number N’ such that for all n; > N’,

5/

1+ 23

[bo, —h[ < (4.5)

where 0 < » < 1 is chosen such that h,, = (1 — sx)h,, + sh,,, given that n; is the
smallest positive integer satisfying n; < m < ny such that there exists at least one element
h,, € (h,,,h,,) from Pr~'(¢,,) n K, which belongs to {Pr™'(£,) n K },cn but does not belong
to {Pr*({,,) n K}in. Observe that
[bpm —h| = [by; —h + by, =y, |
< [bn; = b + [hy — by, |
< [bn, = h + x|hy, —hy, |

< [hn, — b + 5 (b - hy,

+ [hy, =)

e’ Qe

< =
1222 112 ©

/
/

This implies that the sequence {h,,},en converges to h. Hence, each point in Pr—'(¢) n K is
the limit of a sequence {h,} ey with h,, € Pr=(£,) n K.

Let {h, }n.ev be an arbitrarily chosen convergent sequence with h,, € Pr (¢, )n K.
Suppose for a contradiction that {h,, }men converges to h’ ¢ Pr='(¢) n K.

A new sequence, which contains the subsequence {hnij }ien with hnz.j € Pr_l(ﬁmj) N K,
will be created as follows.

For all n,, < n; < ny,41, add the points h,,, to the sequence {h,, }men so that the indices of

the new sequence form a strictly increasing sequence of positive integers, where
{hnz} = (hnmahan) N (Pr_l(fni) N K)

and Pr~'(£,,) n K is a member of the convergent subsequence {Pr*(£,,) N K }ien.
Due to the supposition that {h,, }men converges to h’ ¢ Pr=*(¢') n K, it follows that for

all € > 0, there exists a real number N such that for all n,, > N ,

€

|h,,,, —h'| < ,
1+ 25
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where 0 < s < 1 is chosen such that h,, = (1 — »)h,, — sh,,, given that ng is the
smallest positive integer satisfying n,, < n; < ny such that there exists at least one element

h,, € (h,,,, h,,) from Pr (¢, ) n K. Observe that

thi - h/H = thm —h' + hni - hnm

< [y, — W[ + by, — by, |
= |, =B + s|hy, —hy,, |

< |hy,, = B[ + > (|h,, — B[+ [|h" — h,, )
- € N 2ze B
1+2 1422 ©

This implies that the newly created sequence converges to h’. The newly created sequence
contains the subsequence {hnij }jen with h,, € Pr_l(ﬁnij) n K. This coupled with Theo-
rem 2.6.1 implies that {h,, }jen converges to h' ¢ Pr'(¢) n K. However, this contradicts
(ii). Hence, the limit of any convergent sequence {h,, },eny with h,, € Pr_l(ﬁnm) N K belongs
to Pr'(¢) n K.

Therefore, it follows from Theorem 3.1.6 that ¢ (Pr~"'(4,) n K,Pr ' (¢) n K) — 0 as

n — o0. |

Sub-Lemma 4.2.2.1.5. The closed convex curve Pr™" (£,) nbd(K) coincides with the set
relbd (Pr~'(¢,) n K) in the plane Pr—"(¢,,).

Proof. Let x € relbd (Pr—"(¢,) n K) be arbitrarily chosen. By definition,
relbd (Pr='(4,) n K) = cl (Pr™'(£,) n K) \relint (Pr~'(4,) n K) .

Then,
x € cl(Pr'(¢,) n K) and  x ¢ relint (Pr™'(4,) n K). (4.6)

Recall from above that each Pr~*(¢,) n K is compact, convex and non-empty. It follows

from Theorem 2.5.1 and Pr~'(4,) n K being closed that x € Pr~'(¢,) n K. Therefore,
xePr'(¢,) and zekK. (4.7)
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It follows from K being closed and Theorem 2.5.7 that K = int(K) ubd(K) where int(K) N
bd(K) = ¢J. This means that either x € int(K) or x € bd(K). Suppose for a contradiction
that x € int(K). Then there exists a real number » > 0 such that B(x,r) € K. It follows
that

B(x,7) nPr l(¢,) € K n Pr 1(¢,).

This means that x € relint (Pr~"'(£,) n K), which is a contradiction. Therefore, x € bd(K).

This together with 4.7 implies that x € Pr='(£,,) n bd(K). [

Sub-Lemma 4.2.2.1.6. Any arbitrary sequence of vectors {ry,}nen from {relbd(Pr='(¢,) n

K)}nen converges to q as n — o0.

Proof. Since relbd(Pr~"(¢,) n K) < Pr~'(¢,) n K, it follows that
r, — qf < (5(Pr_1(€n) N K, Pr_l(ﬁl) N K)=max{|y, —dqd| | y» € Pr_l(fn) N K} <e.
|

Sub-Lemma 4.2.2.1.7. There exists an N € R such that n = N implies relbd(Pr~'(£,) n
K) < Ul(q).

Proof. Since U(q) is an open neighbourhood around q in bd(K), it follows that

relbd(U(q)) ¢ U(q).

Thus,
d(relbd(U(q)),q) = inf {|u — q| | u e relbd(U(q))} > 0.

Furthermore, relbd(U(q)) < bd(K). To see this, first observe that bd(K) is closed since
it can be written as the intersection of two closed sets by definition. Also, cl(U(q)) is the
intersection of all closed sets containing the set U(q). Thus, cl(U(q)) € bd(K). Finally,
note that relbd(U(q)) < cl(U(q)), since cl(U(q)) = relint(U(q)) v relbd(U(q)).

(U(a)), q), for

any r,, € relbd(Pr'(¢,) n K). This means that relbd(Pr'(¢,) n K) € U(q), forn > N. B

By Claim 4, there exists an N € R such that n > A implies ||r, —q| < d(relbd
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In other words, Pr='(¢,) n bd(K) < U(q), for n = N. It follows directly that
slab [Pr—"(x),Pr='(¢')] n bd(K) = U(q), for n > N.

Let £, = {5. The line £, lies in the xjx5-plane strictly between and parallel to ¢ and ¢
such that slab [Pr~'(£,), Pr—'(¢)] n bd(K) < U(q). |

Proposition 4.2.2.1.8. The line {, intersects relbd(B) at ezactly two points.

Proof. Recall that the line ¢ is parallel to but distinct from the line ¢. This means there
exists a vector t # o such that ¢ = ¢ + t. Due to the fact that ¢, is parallel to and lies
strictly between ¢ and ¢, there exists 0 < v < 1 such that £, = ¢/ — vt = (1 — )0/ + L.
Recall that p € { n B and q € ¢’ n B. Thus, 7p + (1 —v)q € 4. n (p,q). Moreover,
recall that (p,q) < relint(B). For the sake of simplicity, denote yp + (1 — ) q by y. Thus,
y € U, nrelint(B).

Note that the line ¢, can be written as the union of two rays emanating from y € ¢, nrelint(B)
with opposite directions. By 2.32 in Appendix 1 of [3], each of these rays emanating from
y will intersect the relative boundary of B at exactly one point. Thus, ¢, will intersect the

relative boundary of B at two distinct points. [

One of the points of the set £, nrelbd(B) lies in (p, q) g, denote it by a, and the other lies
in (q,p)p, denote it by b. In particular, this means that while travelling counter-clockwise
on the simple closed curve relbd(B) from the starting point p, the points a, q, b follow each

other in this order, before one returns to p.
Proposition 4.2.2.1.9. The open line segment (a,b) is contained by ¢, N relint(B).

Proof. Recall that ¢, can be written as the union of two rays emanating from y € ¢, n
relint(B). Note that the half-open line segment (a,y] belongs to one of these two rays and
[y,b) belongs to the other. It follows from Theorem 2.10.10 that (a,y], [y, b) < relint(B).
Therefore, (a,b) = (a,y]| U [y, b) € relint(B). [
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As a consequence of Proposition 4.2.2.1.9, there exists a real number 0 < £ < 1 such that
y=%+(1-¢b.

Let B, and By denote the compact parts of B separated by the line segment [a, b| such
that p € By, q € By, B, n Bq = [a,b] and B, u By = B. More formally, By, = B n
slab [Pr~(¢,), Pr—(¢)] and B, = B n slab [Pr~"(¢), Pr " (¢,)]. Note that Bq nrelbd(B) =
[a,b]s and B, nrelbd(B) = [b, a]p.

Furthermore, let B, and Bj, denote the compact subsets of B separated by the line
segment [p,q| such that a € B,, b € By, Ba n By = [p,q] and B, U By, = B. Specifically,
B,=Bn{(1-TI)p+T'q+XA(a—b) |[0<I'<1, A>0}and B,=Bn{(1-TI)p+Tq+
N(b-—a) |0<T <1, N =0} Notethat By nrelbd(B) = [p,q]s and B, n relbd(B) =
[a. p]&.

Proposition 4.2.2.1.10. All elements in Bq n relbd(B) are illuminated by the direction
p—aq.

Proof. Note that Bq < slab [Pr—"(¢,), Pr—"(¢)]. Recall that relbd(B) < bd(K). Hence,
By nrelbd(B) < slab [Pr~'(4,), Pr(¢)] n bd(K). It follows from Lemma 4.2.2.1.3 that

By nrelbd(B) < U(q). This together with Proposition 4.2.2.1.2 implies that By N relbd(B)

is illuminated by the direction p — q. [ |

Proposition 4.2.2.1.11. It is useful to note that relbd(B) = (Bp nrelbd(B)) U (Bq N
relbd(B)).

Proof. Due to the basic fact that set intersection is distributive over set union, it follows
that
(Bp nrelbd(B)) U (Bgq nrelbd(B)) = relbd(B) n (Bp U By).

Substitute B for By U Bgq, to get
relbd(B) n (Bp U By) = relbd(B) n B.
Since relbd(B) € B, it follows that relbd(B) n B = relbd(B). |
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Notice that the line ¢ can be written as {p + A(a—b) | A € R} or equivalently as
{p+ (-2 (b—a) | (-)) R},

Let 7 = max {|k* — k|| | k € K}, where k* is the endpoint of the non-degenerate line
segment Pr(k) n K lying in Hy and k™ is the other endpoint of that line segment lying in

H_.

Lemma 4.2.2.1.12. The following siz directions will illuminate bd(K)\U(q): 3 (q + a)—Db,
1(q+b)—a, ( —ﬁ> (1 (q+a)—b) + Te; and (1—M> (3 (q+b)—a) + Tes.

T+E 2-¢
Proof. Let x € bd(K)\U(q) be arbitrarily chosen. This means x € bd(K) but x ¢ U(q).
Recall from Proposition 4.1.2 that bd(K) = W U relint(B); u relint(B)- and that W,
relint(B)4 and relint(B)_ are pairwise disjoint. Thus, either x € W or x € relint(B)4 or
x € relint(B)_. It follows from x ¢ U(q) that x ¢ slab [Pr~'(¢,), Pr=(¢')] n bd(K) = U(q).
Use de Morgan’s Law to get that x ¢ slab [Pr~'((,), Pr~"(¢)] or x ¢ bd(K). However,
x € bd(K) and therefore, x ¢ slab [Pr~"(¢,), Pr—"(¢)].
Case 1: Suppose x € W = (Pr~!(relbd(B)) n bd(K)). Specifically, suppose z € relbd(B).
In summary, x € relbd(B) < B and x ¢ slab[Pr'(¢,),Pr ' (¢)]. Recall that By <
slab [Pr='(¢,), Pr—"(¢)]. 1t follows that x ¢ Bq. Thus, x € B\Byq < Bp and in particu-
lar, x € By, nrelbd(B).

Remark. This case looks after illuminating any ground points on the wall through By n
relbd(B).

The same method used to show that Proposition 4.2.2.1.11 held, can be used to show
B, nrelbd(B) = (Ba n Bp nrelbd(B)) u (By N Bp nrelbd(B)) .

Suppose, furthermore, that x € By, n B, nrelbd(B) = [b, p]s.
An argument will be presented below to show that any vector strictly between a —b and

q — b illuminates the closed arc By, n B, nrelbd(B) = [b, p]p of the curve relbd(B) in the

r1x2-plane.
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A precise definition of a vector strictly between a — b and q — b is required. Denote the
angle between the vectors a — b and q — b, with value ranging from 0 to m, by «. Likewise,
denote the angle between the vectors q — a and b — a, whose value is between 0 and 7,
by . It should be noted that the vectors a — b and q — b are not parallel. To see this
recall that qe ¢/ = ¢+ tand be l, =+t fort # oand 0 < v < 1. Also, note that
g-b=p+XM(a-b)+t—p—A(a—b)—7t = (N —X)(a—Db)+ (1 —7)t, for some
A1, A2 € R. It can be similarly shown that the vectors q —a and b — a are not parallel. This
means that the angles a and [ are strictly between 0 and 7. Let R,,(a) denote the linear
transformation which rotates the xqxs-plane counter-clockwise through an angle of a. The
vector q — b has the same direction as the vector a — b rotated counter-clockwise through

an angle of « in the zixo-plane. Specifically,

cosae —sina 0

~a=b|
Ja—b]

-b
Rws(@)(a_b):“g_b” sina cosa 0| (a—Db).

0 0 1

It should be clear that HZ:EH > 0. A vector is strictly between the vectors a —b and q — b

if it has the same direction as the vector a — b rotated counter-clockwise in the z;xo-plane

through an angle strictly less than a but strictly greater than 0.

Sub-Lemma 4.2.2.1.13. Any vector strictly between a—b and q—b has the same direction
as

(1—-0)(a—b)+d(q—Db), for some0 << 1.

Proof. First, notice that the angle between the vectors (1 — J) (a—b)+0d(q — b) and a—b,

which will be denoted by 6, is less than «. The triangle inequality is used below to get

(1-d)(a—b)+d(q—b),a—b)
lla—b] - [(1—¢)(a—b)+a(qb)
(1-d)Ja—b|?+dg—b,a—b)
Ja—b[-[(T-a)(a-b)+(q—b)|
(1-0)Ja-bJ*+3(q—ba-b
(1-0)]a— b2+ dlq—blla—b|

cosf =

>
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It follows from the Cauchy-Schwarz inequality that (q —b,a —b) < |q — b||[|la — b|. The
inequalities are strict due to the linear independence of the vectors a—b and q—b. Namely,
recall that equality does not hold in the triangle or Cauchy-Schwarz inequalities when the
vectors involved are linearly independent. This means that Proposition A.3 can be used and
it implies that

(1-0d)fa-b|*+d{@-ba-b) d{g-ba-b)
(1-0)la—b[?+dlq-Dbfla-b| "~ dlqg—Dblja-b]

= COs Q.

This means that cosf > cos a.
Notice that the vectors (1 — 0) (a—b) + d(q—b) and a — b are also linearly independent.

To see this observe that

(1-0d)(a=b)+7d(gq—b)=(1-0)(a—b)+((A\1 —X2)(a—Db)+ (1 —7)t)

—(1=0)+ (M — o)) (a—b)+0(1—7)t.

Also, 0 < 0(1—7) < 1lsince0 < d < 1and 0 < 1—+v < 1. This, together with the
Cauchy-Schwarz inequality, imply that 1 > cosf. Therefore, 1 > cosf > cos«. This means

that the angle 6 between (1 — 0) (a—b) + d(q — b) and a — b lies in the interval
O<bf<a<m.

Now, notice that

lota-a)|

la—al (48)

o=
It follows from the Law of Sines that

la—a| _ [a—b|
sin o sin 3

and

lota—=)| _[(A-da+dq—b|

sin 6 sin 3
These equations are re-arranged and substituted into 4.8 to get

|(1—0)a+ dq—Db|siné

o=
lq — bl sin «
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Let

—b —b .
1—-0+ 8”27]0” cos v —8“27]0” sin o 0
A= 6”2:2” sin o 1—0+ 0\\2:5“ CoSs v 0
_ |a—b|
0 0 1-0+olatl
Then,
Ja— b
1—-0 —b d(qg—Db
a1 @b o)
Ja—b] la—b
- 1— _ _
= djatoq—p] \! ~ I @=P) T fs (@) ) (2 =b)
Ja—b
= Ala— . 4.
[A—jatdq_b] &P (4.9)
Observe that
labl ol
[i—d)a+oa—b] ° Ja=b
_ Ja-b| [0 -a+ig-blsnd Jg-b|
[T=d)a+oq—b] lq— blsina [a—b]
= sin@
and
la—b] lq— b
]_ _
[A-da+aq—b] \\~F fa—p] =
_Ja=bl da-bl  da-b| <@q—ua—w>
[T—d)a+dq—b] [(1-datéq—b] [Q-3a+dq—b] \Jq—bllab

_ (1-9)a-b|*+{2(q—b),a—b)
|(1-=0)(a=b)+(a—b)|-|a—Db]
_ {(1-0)(a-b)+d(q-b),a—h)
|(1=20)(a=b)+7(q—b)| [a—D]

= cosf

The entry in the third row and third column of the matrix in 4.9 can be re-written as follows:

|a—b
[(1—0)a+dq—bl

(1-o+old=bl) _ Q=Dla-bl+dla-b

la—b|)  [@-0)(a—b)+o(q—b)|’ (4.10)

In general, Equation 4.10 is not equal to 1. In fact, Equation 4.10 is equal to 1 if and only if

there exists some real number A > 0 such that ¢ (q —b) = A (1 — ) (a — b). This is does not
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happen here; it was shown above that the vectors a —b and q — b are linearly independent.

However, the vector a — b lies in the x;x9-plane. This implies that

b
<a—h&§=0=(1—8+4E_b0<a—b£@.

It follows that

cosf{a—b,e;) —sinf{a—b,ey)

2bl(1-5)(a—b)+(a—b)) = | sinfab,es) + cosfia bes)

| (1 —0d)a+dq—D

0

cosf —sinf 0
= |sin® cosd 0] (a—b)
0 0 1

= Ry, (0) (a—Db).

Recall from Proposition 4.2.2.1.8 that a,b € /¢, are distinct. This means that a — b # o
and therefore, |a — b| > 0. Also, recall that q € ¢ is distinct from the points a,b € /,,
since it lies on a distinct parallel line. Moreover, recall that 0 < ¢ < 1. It follows that
(1-0d)a+dq—b=(1-0)(a—b)+0J(q—b) # o and therefore, | (1 —0)a+dq—b| > 0.

Hence,

la-bl
[(1=da+aa—b]

Now, notice that the line passing through the points b and (1 — 0) a + dq intersects with
the line ¢, at the point b. It follows from Theorem 2.2.2.1 that the line through the points b
and (1 — @) a+ dq is not parallel to the line ¢,. This implies that the line through the points
b and (1 — d)a + dq is also not parallel to the line ¢, since the lines ¢ and ¢, are parallel.

The intersection point of the line through the points b and (1 — d) a + dq with ¢ is

b+1a_—77(b—((1—(3)a+(3q)).
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To see that this point lies on the line ¢, observe the following argument:

b + 1(;y7<b—((1—8)a+8q)>

—p+b-p) - ((1-001-¢)@a-b)+r(a—p))
(1-7)(-00-¢)
0y

- (Jl_W(la‘j“‘@) _g) (a—b)e{prAla—b) | AR} =L

=p+&{(b-a)+(1-7)(q-p)—(1-7)(a—p) - (a—Db)

Sub-Lemma 4.2.2.1.14.
l1—v
By, N By gconv{p,(l—&)a—l—&q,b—i— 7—7(b— ((1—6)a+&q)>}.
C

Proof. Suppose for a contradiction that this is not the case.

In particular, suppose that there exists z € By, n B such that

z¢conv{p,(1—@)a+8q,b+ﬂ(b—((1—8)a+6q)>}.

v

Figure 4.11: The point z lies somewhere in the shaded region
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This means that z € B and can be written as p + i1 (@ — p) + u2 (b — a), for some
0<in<1-—~ (4.11)

and for some

o> (1 32) (U0 2200) 12

1—v vy

Moreover, z lies on the ray emanating from the point

(7 - %) p+ <1 - <7 - %)) qely,q) € (p,;q) S relint(B)

with direction z — b. Specifically,

R L (G I

=p+(1—7)(q—p)+w/;+_§ul)(q—p)

+<1+M2§_§> (p+u1(q—p)+u2(b—a)—b>

=p+(1—v)(q—p)+%(q—p)
+ <1+M2§_£) ((@=Db)+ (=7 (P-a)+m(a—p) +pm(b-a))
=p+(1—7)(q—p)+%(q—p)+ <1+u2§—§> (I=y—m)(p—a)+
M2
(L) -0 -a

=p+um(q—p)+p2(b—a)=az

To verify that the point

(=) (- (-5

1] —~ —
lies in the half-open interval [y, q), one must show 1 —~v < 1 — (v - M) < 1.

po — &
In showing that the lower bound of the inequality holds, first notice that it immediately
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follows from (4.12) that

o — € > (1_ 1@17) ((1—7) Ua}w—@))'

Recall that 0 < v < 1. Tt follows that 0 < 1 —~ < 1. This means (1 —)® > 0. Therefore,

(1 —9)*+ (1—7) > 0. Note that

1
It;(a—7f+ﬂ—7»:41—w+1>0 (4.13)
1
This implies that N > (. Combine inequalities (4.13) and (4.11) to get 0 < 1'1“ <1
-7 -7
It immediately follows that
H1
0<1-— < 1 4.14
2 (4.14)

Recall that 0 < 0 < 1. Therefore, 0y > 0. Arguments similar to those above along with an

inequality similar to (4.13) can be used to show that

— . 4.1
PR >0 (4.15)

Also, recall that 0 < £ < 1. It immediately follows that 0 < 1 — ¢ < 1. This together with
Corollary A.2 implies that 0 < 0(1 —¢§) < d < 1. This means 0 < 1 — (1 — &) < 1. Thus,
(1-=9)(1—=2(1—=¢))> 0. This together with (4.15) implies that

(1-17)(A-0(1-9)
o

> 0. (4.16)

The product of non-negative real numbers is itself a non-negative real number, so together

(4.14) and (4.16) imply that

(- ) (Um0 2000y

This means py — & > 0. Therefore,

1
p2 =&
It follows from (4.11) that 1 —~ — p; > 0. Therefore, € (1 — vy — p1) = 0. This together with

> 0. (4.17)

(4.17) implies that
El-y—m)_,
po —§
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Hence,

_ _M) i
! (fy pa —§ S

In verifying that 1 is a strict upper bound for 1 — <fy — w_—w> , first notice that
M2 —
B l—y—m\ (A=) (A-0(1-9)
7 (pe ®>7< T )( o
A=y —m)(A-0(1=9)
5 :

Again, recall that 0 < ¢ < 1. This means that 0 < 1 — ¢ < 1. Therefore,

6(%—1):1—6>0.

1
This implies that i 1 > 0 and thus,

1
= > 1. 4.18
. (1.18)
It was shown above that 1 — v —p; > 0and 0 < 1 — (1 —¢) < 1. This means that
(1—~v—m)(1—=0(1—¢&)) = 0. This together with (4.18) implies that

I=r—m)(A-0(1=9)
0

>(l=y=m)(1-2(1-9).
Therefore,
Y(pa —&) > 1 —y—m)(1—-0(1-)).

It follows from Corollary A.2 that 0 (1 — &) < 1—¢. Thismeans 1—0 (1 —§) > 1—(1 —¢) = ¢&.

Therefore,
V(p2 =& > &L —v— ).

Recall from above that

> (). Hence,
po —§&

(1 —v— ) <.
p2 —§

It follows that
1 —~ —
1— (’y _ (1 —y—m)

)<1—’y+”y:1.
po —¢§
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By Theorem 2.10.10, the half-open segment

O (- 0o,

on the ray emanating from the point

e A G Uy

with direction z — b, is contained in relint(B). In other words,
1—~— 1—y—
po — & po — &

for some 0 <t < % It follows that z ¢ relint(B).

M2 —
By Corollary 2.10.12, the ray emanating from the point

with direction z — b intersects the relbd(B) at exactly one point,

o= (- S (- -5 Jar e

Clearly, z # b. Therefore, z ¢ relbd(B).

Thus, z ¢ relint(B) u relbd(B) = B, which is a contradiction.

Hence,
1 -7
By n By, € convip,(l—0)a+dq,b+ W(b— ((1—6)a+é‘q)> .
Consequently,
x € [b,p]p = By, N Bp nrelbd(B)
l—x
gconv{p,(l—@)ajtéq,b—kw(b— ((1—6)a+6q))}.
Notice that (1 —d)a+ dq ¢ By n Bp. To see this, first observe that
(1-0d)a+dgq=a+0d(q—a)
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=p+(1-7)(@-p)+1-¢§@-b)+o((1-¢(b—a)+y(a—p))

=7(1-0p+(1-71-0)a+(1-09)(1-¢§(a-Db),

where 0 < (1 -0)(1 —¢) <1land 0 <~ (1—0) < 1. This means that

This means

(1-0)a+dq¢{(1-T)p+Tq+XN(b—a) |0<I<1, X=>0}

(1-a+dq¢ Bn{(1-T)p+Tq+XN(b—a) |[0<T <1, \>0}=DBy.

Therefore, (1 —0d)a+ dq ¢ By, N Bp.

Also, notice that

1—
b+#<b((1fé‘)a+é’q)> ¢ By N By,

To see this, begin by noticing that the open line segment (b, (1 — ) a + db]| belonging to

the line passing through b and (1 — @) a+ dq that intersects (p,q) < relint(B). Specifically,

with

and

(1—%)b+ﬁ((l—&)a+@q>

b e (=209 a=b) + 2 (a-p)
“p+ (=) (a=p)+E(b—a) +€a—b) + T (a-p)

4“”(“%))“”@‘%)1’

§
1-0(1=¢)

0< <1 (4.19)

0<~ (1 - %) <1, (4.20)

which means

1
(-1

<1—@>b+1—au—£>

§ §

((1 —0) a—i—@q) € (b, (1-20) a+6q) m(p, q) < int(K).
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To see that (4.20) holds, first recall that 0 < £ < 1 and 0 < ¢ < 1. It immediately follows
that

0<€l<l—0+E0=1-0(1-¢). (4.21)

Therefore, (1 -0 (1 —¢) )2 > 0 and notice that

m(l—a(l—@fﬂ—au—gpo.

This together with (4.21) implies that

1

— > 0. 4.22
-9 (4:22)
: : £0 :
Combine (4.21) with (4.22) to get 0 < T-00=9 < 1. This means that
&0
0<l————F——-—<1. 4.23
Sioaa-9 T (4.2
Recall that 0 < v < 1. By Corollary A.2 and (4.23),

%

To see that (4.19) holds, first observe that ¢ (1 —¢§) < 1 — ¢ by Corollary A.2 and therefore,
O<é=1-(1-&<l-0(1-¢). (4.24)

Combine (4.22) with (4.24) to get that

&
1-0(1-¢)

Now, recall that b € relbd(B). It follows from Corollary 2.10.12 that the ray emanating

0< <L (4.25)

from the relative interior point

(1— 1_8(51_5)>b—|—1_af1_£)((1—0)a+6q>e(b,(l—&)a—l—@q)

with direction b — (1 — @) a + dq intersects the relative boundary at exactly one point, b.
Note that
1—
b+—7<b— ((1—a)a+aq)) £b,
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Gl
that 0 < 1 — 0v < 1. Notice that

(3fy<i—1):1—(3’y>0.
0y

It follows that &i > 1 and therefore,
Y

since T 0. To see that this inequality holds, first deduce that 0 < ¢y < 1. This means

—>1-7>0. (4.26)

1—
Hence, the point b + N (b — ((1 —Jd)a+ 8q)>, on the ray emanating from
B

(1— 1_afl_€)>b+1_af1_£)((1—6)a+8q>e(b,(l—&)aJr&q)

with direction b — (1 — @) a + dq, does not belong to relbd(B).

Moreover, it follows from Theorem 2.10.10 that

(b, (1 — %) b + %((1 —Jd)a+ 8q>] < relint(B).

In other words, the intersection between the ray emanating from

(- rtrg) > g (00

with direction b — (1 — @) a + dq and relint(B) is the half-open interval

(b (1= g )bt st (- Dasaa)]

Every element in this half-open line segment has the form b + /\( (1-0)a+0dq— b), for

1—
S . It follows from (4.26) that T o Therefore,

1-20(1-¢) 0y

¢ ¢
<1—§>)b+1—a<1—5>

some 0 < A <

b—%((l—a)a+8q—b) ¢ (b (1_ 10

((1—a)a+aq)].

Hence,

b + 1_7<b— ((1 —@)a+8q)> ¢ relint(B).
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It follows that

b + 18_—77<b - (1-0)a+ 5q)> ¢ relbd(B) v relint(B) = B.

Therefore,

b+1a_—fy<b((1fé’)a+é’q)> ¢ By N By.

Accordingly, there exists real numbers 0 < o; < 1 and 0 < 09 <1 — 07 < 1 such that
1—
x=0p+o((1—0)a+02q)+ (1 -0y —02) (b— #((1 —(7)a—|-(?q—b)) ,
for any x € By, n Bp nrelbd(B) = [b, p]s.

To show that x € B, n By, nrelbd(B) = [b, p|p is illuminated by any direction (1 — ) a+
dq — b, for some 0 < ¢ < 1, begin by considering the case where 0y = 1 and o9 = 0. In this
case, x = p. Recall that p is a smooth point on the relbd(B). This means the supporting line
of B at p, ¢, is unique. Notice that the line {p + A ((1 —d)a+ dq —b) | A € R} is parallel

to the line passing through the points b and (1 — d)a + dq. Recall that the line passing

1—
through the points b and (1 — ) a + dq intersects the line ¢ at the point b + 7 <b —

v
((1 —Jd)a+ &‘q)) and therefore, ¢ is not parallel to the line passing through the points b
and (1 — Jd)a + dq. Hence, ¢ is not parallel to the line {p + A ((1 —d)a+ dq—b) | A e R}.

It follows from Proposition 2.10.1.4 that
{p+A(1—-0)a+dq—Db) | Ae R} nrelint(B) # &.

This means that either the ray emanating from p with direction (1 — 0) a+ dq — b intersects
relint(B) or the ray emanating from p with direction b— ( (1 — @) a+7q) intersects relint(B).
Recall that B lies between the lines ¢ and ¢'. This implies that the ray which passes through

the region between the lines ¢ and ¢ will intersect relint(B). Observe that the point p +
L—x
oy
intersects the line /,, which lies in the region between ¢ and ¢':

( (1-0)a+dq— b) on the ray emanating from p with direction (1 —d)a+ dq—b

p+1a_—77((1—8)a+6q—b)
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Therefore, the direction (1 —¢J)a + dq — b illuminates p. This means that there exists
an element d, which belongs to relint(B) and the ray emanating from p with direction
(1-0)a+dq—b.

Note that by Theorem 2.10.10, (p,d] < relint(B). Let d’ € (p,d] be chosen so that

d-p=n((1-0)a+dq—Db),
for some 0 <7 < 1. It follows from Theorem 2.10.10 that
((1—20)a+ oq,d'] < relint(B).
Now, consider the case where 0 < 07 < 1 and 0 < 09 <1 — 07. It follows that
0<l—-0;,—-03<1—07<1. (4.27)

The point

(1-01—09)(1—7)
o

X+<(1—O’1—O'2)+ +n01)((1—8)a—|—5q—b)

belongs to both the ray emanating from x with direction (1 — d) a+ dq—Db and the half-open
line segment ( (1 — ) a+ dq,d’] < relint(B).

To see this, first observe that

(1-01—0y)(1=7)

(1—01—02)+ a/y

+ noi > 0.

This follows from the inequalities (4.27), (4.26), 1l <oy <land 0 <n < 1.

Then, notice that

(1-01—09)(1—1)
o

x+((1—al—02)+ +nal)((1—a)a+aq—b)

=op+oz((1-0)a+dq)+(1—o01+02) (b—%((l—@)a—k&q—b))—l—
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((1—01—02)+ (1=o _(;;)(1_7) +7701> ((1-0)a+dq—b)

=op+(1—01)((1—0)a+aq) ++noi((1—0)a+dg—Db)

=od +(1-0y)((1-0)a+dq)e ((1-0)a+dq,d],

since 0 < o7 < 1.

Hence, the directions (1 — 0) a+ dq— b illuminate the closed curve By n By nrelbd(B) =
[b, p]g, for any 0 < ¢ < 1. Recall that the directions (1 — d)a+ dq —b and R,, (6) (a —b)
are parallel. This means R,, (#) (a — b) illuminates the closed curve By, n By nrelbd(B) =
[b, plg, for any 0 < 6 < a.

Similar arguments can be used to show that for any angle 0 < T < 3 there exists some
scalar 0 < ¢ < 1 such that the vector R,, (—Y) (b —a) is parallel to (1 —¢")(b—a) +
0’ (q —a) and ultimately, that the directions R,, (—Y) (b —a) illuminate the closed arc
B, n By nrelbd(B) = [p,a]p for any 0 < T < f.

It follows that that any of the directions R,,(f) (a — b) together with any of the directions
R,,(Y)(b—a), for any 0 < § < awand 0 < T < f, will illuminate the closed arc B, n
relbd(B) = [b, a]p of the closed curve relbd(B) in the x;xs-plane.

For the sake of simplicity, choose the specific directions % (q+a)—Db and % (q+b)—a.
Case 2: Suppose that either x € <W\relbd(B)> N Hy or x € relint(B); = Pr~'(relint(B)) N
bd(K) n Hy.

Recall from above that x ¢ slab[Pr—'(¢,),Pr—"(¢)]. Note that slab [Pr~"'(¢,),Pr~"(¢)]
can be expressed as {z e E3 | Pr(z) € (1 - /~X> (+ A0, for A<A < } This means Pr(x) ¢
<1 — /NX) {4+ Al for any A < A < 1. Therefore, Pr(x) ¢ slab[ Pr_l(ﬁ’)]. Again,
recall that By < slab [Pr~'((,), Pr='(¢')]. Hence, Pr(x) ¢ Bq. It follows that Pr(x) €
B\By < B,.

Suppose, furthermore, that Pr(x) € By,.

It was shown in Case 1 that

Bmepgconv{p,(l—&)a—l—@q,b—i—1;—77<b—((1—6)a+6q))}
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and that

1_
(1—&‘)a+8q,b+#<b—((1—(3)a+(9q)> ¢ By N By,

This means Pr(z) can be written as

1 —
otp +oy((1-0)a+dq) + (1 -} — ) (b+a—77<(1—6)a+6q—b>),

for some 0 <o} <land 0 <o) <1—o07.

However, it is important in this case to notice that

1_
op+o)((1—0d)a+dq) + (1— o) — o)) <b+—7<(1—a)a+aq—b>) ¢ By N By,

o
for
/ vé
1>0, >
=) (=01 -8) + v
and
1_7 / !
m<02<1—01.

To see this, observe that

oip+oh((1—d)ataq) + (1o —ob) <b+1(;—77<(1—&)a+6q—b>)
S R R R CATE R el Pl (RO
(a2 )a-o0-0)- a-ae|@-b
and observe that
(=== 227 ) -0 -€) - (1=
r-o0-9) (14 77) - a-ap (+ a-00-0) )

I

(=) (P52 a-ea-o)-a-ob (e+ a-o0-0)77)
o (U200 ey

2
> (rreigree) () gm0
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Moreover,

/ / / / 1— /
=)=+ (o= (-al =) ) oy = ah(or 4 1-9)

and it follows from Corollary A.2 that
/ / / / 1— Y /
-a-)+ (=A== oh 20 ) oy = @y 41-9)
<oy<l—0]<1.
In particular, this implies that

1_
op +oy((1—)a+0q) + (1— o) —a}) (b+#((1—6)a+&q—b)) € B..

Recall from above that B, = (B\Bp) U [p, q] Therefore,

op+oh((1—0d)a+oq) + (1— o) — o) <b+1a_—77<(1—é’)a+é’q—b>> ¢ By,

And thus,

! / / / 1_7

op+oy((1—0)a+oq) + (1—of —ah) <b+—<(1—8)a+@q—b>) ¢ By, N Bp.
This means

]__
Pr(x) = otp+o}((1—0)a+dq) + (1— o — a}) <b+—”(<1—a)a+aq—b)>,

v
for some
, 0§
0<o; <
PRy (1-0(1-9) + 0
and
/ 1_7
< —.
0 <oy P

In verifying the upper bound of ¢} is well defined, first notice that

(1= 1-00-)+08) (Tr=ri—grrae) =0
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and

Gals
(1= @ =0(1—=¢)+¢

Recall from (4.21) that 1 — d(1 —¢&) > 0. It follows immediately from 0 < 7 < 1 that

((1—7)(1—5(1—6))+87£)<1— ):(1—@(1—6(1—5».

1 —~ > 0. Therefore,
(1-0(1—=¢)(1—7)>0. (4.28)

Also, recall that 0 < 0,& < 1. This means that 0v¢ > 0. Thus,

(1=0(1=8) (1 =7)+E>0.

Hence,
Gals
A-N(-0(-g)+oe "

To verify the upper bound of ¢ is well defined, observe that

0<

11— .

and

(v +1—7) (1—01—671;—17_7) =(@y+1-7(10-0)—(1-7).

Again, recall that 0 < v,0 < 1. Consequently, 0y > 0 and 1 —~+ > 0. This means

0y +1—~ > 0 and thus,
-7

— > 0.
oy+1—7v

Use the improved upper bound on ¢/ to get

(Oy+1=7)(1—=0)—(1-7)
(1-2)(1-2(1-8)
>0 (i e gy e me) 07
Ry (GRAESIEGIES, S EOIE Ll
-0 -20-0) + o€
A-7y(@-§1-7
-0 -a0-8) 7 e
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Notice that

(I-=y)ady(1-£(1-0)
I—7)(1-0(1=&)+ 0¥

where (1 —v) (1 =0 (1 —¢&)) +0v€ > 0 from (4.28) and (1 —v) 0y (1 —&) (1 —0) > 0 can be

((1—7)(1—9(1—5))+(%€)(( ):(1—@(%(1—5)(1—@,

similarly shown. Thus,
A-Mn(1-H0-9 _,
Q-7 A-0@=-8)+v¢

which implies that (v +1—7) (1 —0o}) — (1 —~) > 0. Hence,

1 —
oy+1—x

/
<1_O-l'

It follows from Case 1 that

1—
Pr(x) + <(1—0’1—0é) <1+W’y) —1—7701) ((1—0)a+dq—b)
=od+(1-0d))(1-0)a+dq)e ((1-0)a+dq,d]
Recall that 7 = max {|[k™ — k™| | ke K}. It follows that

x:Pr(x)+p-ge3,

1—
for some 0 < p < 1. Let ( = (1 — 0} — d}) <1+W7)+7701.

Now, observe that

x+ (2) K1—%> ((1—8)a+5q—b)—7’e3}

¢
—8(1_€)>((1f8)a+6qb)

-
(5) (- ratrg) (&) (0 (-0 o)

It will be shown that

x+<g> [(1—%) ((1—a)a+0q—b)—Te3]
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e (Pr(x),o0d +(1—0})((1—0)a+dq)].

First, notice that

oy+1—7v
(1= A—-0(1—=&)+ ¢

Recall from (4.28) that (1 —v)(1—=0(1—¢&)) + 0v¢ > 0. Also, recall from above that

(<1—fy><1—a<1—a>>+av£)< ):awl—fy.

0y +1—~>0. Hence,
oy+1—v 20
(1=0(1=8)A—=7)+ ¢

(4.29)

Then, observe that

1-— 1-— 1-—
C(=(1—0]—0%) <1+—7)+na§>—a;<1+—7>+(1—a;)<1+#).

o7y o

Use the improved upper bound on ¢} to get

1—x oy+1—v , 1—x
= — 1-— 14+ —
(07+1—7>< 0y >+( 01)< T

, (07 + 11—y
21—0'1 T

Now, use the improved upper bound on ¢} to get

=1 ((1—7) <1—?<§—5>>+a75> (Maiw)

- (1_a<§1—§>) ((1—@ iR )

Then, by (4.25), (4.29) and Proposition A.1

S IR S
1-0(1-¢)
Recall from (4.25) that
£
— < 1.
0< =01 —¢) <
It immediately follows that
£
1 — > ) 4.
(¢ > 1—5(1—§)>0 (4.30)
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Also, notice that

§<%):1>0.

1 1
This together with (4.30) implies that c > 0. Multiply (4.30) by c to get

b (i) (D) am

Recall that 0 < p < 1. It immediately follows that 0 <

< < 1. Combine this with

N D
N | —

(4.31) to get

It follows that

x+<g>[<1 1_7(1_ ))(( d)a+dq—Db) — T63]

(-6 (i) ()
< () (“%) (Z) (ohd + (1= o) ((1-0)a +2q))

e (Pr(x).oid + (1 - o) (1 0)a+ 2q)]

Recall from Case 1 that any element in ((1 —Jd)a+ oq,d’ ] belongs to relint(B). It follows

from this and Theorem 2.10.10 that
(Pr(x),otd + (1 —0}) (1 — 0)a+ dq) | < relint(B).
Thus,

X + (g) l<1 - %) ((1—0)a+oq—b)— Teg] € relint(B) < int(K).

Hence, the direction

£
(1—m> ((1-0)a+0dq—Db) —Te;

illuminates any x € (W\relbd(B)) N H, or x € relint(B)4 as long as Pr (x) € By,
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A very similar method can be used to show that the direction

(1 — 11__;&) ((1-0)b+dq—a)—Tes

illuminates any x € (W\relbd(B)) N Hy or x € relint(B)4 where Pr(x) € B,.

The case where x € relint(B)_ or x € (W\relbd(B)) N H_ will follow similarly with the

directions

and

(1 — 11__(§£> ((1-0)b+dq—a)+ Tes.

For the sake of simplicity, choose the specific directions

(1—12—f§) (%(qua)—b) ey

(1_22%_;)) (%(qub)—a) + Tes.

and

Thus, the seven directions p—q, 3 (q +a)—b, 1 (q + b)—a, ( - 12—+§§> ((q+a)—Db)+
Tes and (1 - %}9) (3 (q+b) —a) + Tes will illuminate K. |

Proposition 4.2.2.1.15. In the special case where all elements of relbd(B) are ground

points, the five directions p—q, 2 (q+a) —b, 3 (q+b) —a, e; and —e; illuminate K.

Proof. In this special case, W = Pr~'(relbd(B)) n bd(K) = relbd(B) as a result of ev-
ery element from relbd(B) being a ground point. Recall from Proposition 4.2.2.1.11 that
relbd(B) = (Bp nrelbd(B)) U (Bq N relbd(B)). It follows from Proposition 4.2.2.1.10
that all elements of By N relbd(B) are illuminated by p — q and it follows from Case 1 of
Lemma 4.2.2.1.12 that any element of Bj, N relbd(B) is illuminated by either 3 (q+a) —b
or 1 (q+b) —a. Thus, W is illuminated by the three directions p — q, 1 (q +a) — b and
1(q+b)—a

To see that the direction —es will illuminate relint(B)4, observe the following argument.
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Suppose x € relint(B)y = Pr! (relint(B)) n bd(K) n Hy. Notice that this means x e
Pr! (relint(B)) = {z € E® | Pr(z) € relint(B)}. This implies that Pr(x) € relint(B). Just
like in Case 2 of Lemma 4.2.2.1.12, there exists some real number 0 < p < 1 such that

x = Pr(x) 4+ p- Zes. It follows that

X p- L (~es) = Pr(x) +p- Les—p- ey = Pr(x) < relini(B),

which shows that the vector —ejz illuminates any element in relint(B).

A similar argument can be used to show that the direction e3 illuminates relint(B)_.
Recall from Proposition 4.1.2 that bd(K) = W U relint(B)4 U relint(B)_ and that the sets
W, relint(B)4 and relint(B)_ are pairwise disjoint. Hence, the directions p—q, % (q+a)—b,

2 (q+b) —a, e3 and —e; illuminate K, in this special case. [

4.2.2.2 Suppose that q is a cliff point.

In general, the direction p — q does not illuminate the cliff, [q~,q"], at q.

Proposition 4.2.2.2.1. Let 7 = ||q" — q|. The directions p — q — 7e3 and p — q + Tes

illuminate the cliff [q—,q"] at q.

Proof. Let z € [q,q"] be arbitrary. This means that there exists 0 < w < 1 such that
z = (1 — w)q + wq*t. Recall from Claim (i) in §4.2.2.1 that (p,q) < int(K); therefore,
Yy (p+q) € int(K). It follows from Theorem 2.10.10 that [Y2 (p + q),q") < int(K) and
(@2 (p+a)] < int(K). Therefore, /5("/2 (p +a) +a"),"s(Y2(p+a) +q7) € int(K).

By Theorem 2.10.15,

and
1/1 ) 1 .
[5 <§(p+Q)+q >,§(p+q)] < int(K).
The ray r? intersects the closed line segment [Yo (Y2 (p+q)+q7),2(p+4q)].

p—q—Te3

l+w
4

z

b—q_res Can be

To see this, observe that the element z + (p —q— 7e3) of the ray r
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re-written as follows:

l+w l+w
z+— (P—q—7e3) = (1 —w)q+wq’ + 1 (p—q—Te3)
T 1+w
=(1—w)q—|—w<q+§e3>—|— 1 (p—q—Te3)
_1—w _Te>+w w+w—w @ N ( N )
— Ty \479%)Tod 1 g4 7\PTa
—1_w<(+)+ >+w(+)
=5 |\gP+td+a 5 (Pta
1 N\ 1
cl=(=(P+a)+q |.=(p+q)| S int(K),
2\ 2 2
for 0 < <%<%<1.

[

Let z' € [q~, q] be arbitrary. A nearly identical proof to the one directly above will show that

the ray rf,/_q +re, intersects the line segment [/ (p + q) , Y2 (Y2 (p + @) + g™) | and therefore,
intersects int(K). [

Proposition 4.2.2.2.2. There exists a real number x' > 0 such that the directions p—q+7es
and p — q — Te3 illuminate, (ngmrelbd(B) + x'B (o, 1)) N bd(K), an open neighbourhood of
WZ’mrelbd(B) on bd(K)

Proof. Let I = [Y/2(Ya(p+a)+a7),2(p+a)]ul/2(p+a),/o(2(p+a)+a")] and
let X' = inf{|x; —xx| | x; € I, x, € bd(K)}. It is important to verify that x’ > 0 and
B(n,x') € K, for any n € [.

First, observe that Proposition 2.10.5 and Corollary 2.10.8 imply that

[/2(Y2(p+a)+a7), /2 (p+a) and [V2(p+a),"/2(V2(p+a)+a")]
are compact. It follows by Proposition 2.8.3 that
[% (%(p+q)+q‘> ,%(p+q)}UB(p+q)é (%(p+q)+q+)]

is compact. Furthermore, note that bd(K) is closed. This means that by Theorem 2.8.5,

there exist elements k; € I and ks € bd(K) such that
|k1 — kol = inf {||x; — xx|| | x; € I, xx € bd(K)}
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Recall from Proposition 4.2.2.2.1 that

B (%(p+q)+q) ,%(p+<1)]7[%(p+q}é (%(p+q)+q+)} < int(K).
This means that

B (%(p+q)+q‘> ,%(p+q)]UB(p+q),% (%(p+q)+q+)] < int(K).
This together with Theorem 2.5.7 implies that
(B (%(p+<1)+q> ,%(p+q)]U[%(p+q),% (%(p+q)+q+)D (bd(K) = @.

Hence, k; # ko and therefore, x’ > 0.

Finally, let n € [ and g € B (n, x’) be arbitrarily chosen. Then,
lg —nf <X’ <inf {|n - x| [ x € bd(K)} < [k —n],

for all k € bd(K). This means g ¢ bd(K).
Since n € int(K), it follows by Corollary 2.10.12 that there exists k € bd(K) such that
{12} =rg_n N bd(K). Since K is convex, [n, E] < K. Moreover,

AR ST
SLVAN S
since |g —n| < H1A< — nH
Hence, B (n,y’) € K, for any n € I.
It is, also, important to verify that Wy emacs) + X'B (0, 1) n bd(K') contains Wy renda(s)
and is open in bd(K).

Let x € Wy nreba(p) be arbitrarily chosen. Note that

X'B(o1) = {xz | |z] <1}
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= {ZEES l/HzH < 1}
X

={zeE’ | |z] < x'} =B(o,x). (4.32)
Clearly, o € x'B (0,1). It follows that x = x + 0 € Wy emacs) + X'B (0,1). Thus,
W nrema(B) S Werremacs) + X'B (0, 1) .
Recall that Wy Areba(s) = Pr=! (¢ A relbd(B)) n bd(K). This means
Wé’mrelbd(B) = WZ’mrelbd(B) N bd(K) - (Wefmrelbd(B) + X/B (07 1)) N bd(K)-

It follows, by Equation 4.32, that Wyaremas) + X'B(0,1) = Wynremas) + B (o, x’). By
expanding and simplifying,

W Areiba(s) + B (o, X') = U (x+B(o,x)) = U B(x,x').

XEWy Arelbd(B) XEWy/ A relba(B)

By (i) and (%v) of Theorem 2.5.1, { ey, B (x, x’) is open.

nrelbd(B)

Thus, Wy arewa(s) + X'B (0, 1) is open in E?. Equipping bd(K') with the subspace topology

Toax) = {V nbd(K) | V is open in E*}, it can be seen that
(Wé’mrelbd(B) + x'B (o, 1)) Nnbd(K) e Toa(k)

and therefore, (Wg/melbd(B) + x'B (o, 1)) N bd(K) is open in bd(K).
Finally, it must be verified that (Wg/mrelbd( B) + X'B (o, 1)) Nbd(K) is illuminated by either

P—q+T7esorp—q-— Tes.
Let z € (Wg,mrelbd(B) + x'B (o, 1)) N bd(K) be arbitrarily chosen. It follows, by definition,

that there exists a scalar 0 < ¢/ < 1 and a unit vector v such that
z=x+pux'v,
for some x € Wy rremmacp). Here, in §4.2.2.2,

W nrebasy = Pr=" (¢ Arelbd(B)) nbd(K) = Pr" ({q}) nbd(K) = [q",q"].
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It follows from the previous Proposition 4.2.2.2.1 that x can be illuminated by either p —q+
Tes or p —q— 7e3. Suppose, without loss of generality, that x is illuminated by p —q — 7es.

This means that there exists a real number A\’ > 0 such that
x+ N (p—q-—rTe3) el < int(K).
It follows from above that
B(x+\XN(p—q-—r7e3),x)c K.

Let z’ be an arbitrarily chosen element from B(z +A(p—q—Te3), X (1 —u) ), where the

point z + A (p — q — Te3) is an element of the ray 77, ... Observe that

|z' = (x + N (p —a—7e3))|
<z = (z+XN(P-a—7e))| +[z+N(p—a—7e3) — (x+ N (p—a—7e))|
<X (A=) +x+px'v+N(p—a—rTes) - (x+N(p—q—r7es))|
=xX'(1 =) +uX|v] =x"
This implies that
Bz+XN(p—a—r7e3), X' (1-4) =Bx+XN(p—aqa—r7es),x).

Thus, z + N (p —q — 7€3) € 1 _y_e, N INt(K). |

It follows from Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9 that there
exists points a, b € relbd(B) n (Wg/melbd(B) + x'B (o, 1) ) such that the points p,a,q and b
follow each other in this order when travelling counter-clockwise on relbd(B) starting at p.
Moreover, the line passing through a and b is parallel to £ and ¢’. By Lemma 4.2.2.1.12, the
directions 1 (q +a) — b, 3 (q+b) — a, < - lz—fg) (: (a+a) —b) + Te; and

(1 - ”;T—;Q (1 (q+b) —a) £ Tez will illuminate bd(FK)\(Werapacz) + X'B (0,1) ).
This means that the eight directions p—q+ 7es 1 (@ +a) —b, 1 (q+b) —a,
( B &) (1(q+a) —b) + Te; and <1 B 2(1—5)) (3 (g + b) —a) + Tes illuminate bd(K).

1+¢ 2-¢
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4.2.3 Second Major Case of Theorem 4.1

In this second case, the illumination of K is constructed when relbd(B) contains at least one

side and has the property that either:

(i) the complete antipode of the midpoint of one of the sides of relbd(B) is a

single point; or

(ii) for each side of relbd(B), there exists another side parallel to it and the wall

through one side of relbd(B) is degenerate.

4.2.3.1 Suppose relbd(B) contains a side such that the complete antipode of its
midpoint p is a single point q.

If q is a ground point, then K can be illuminated using the exact same procedure as in

§4.2.2.1. This means 7 directions illuminate K.

If q is a cliff point, then K can be illuminated using the exact same procedure as in §4.2.2.2.

This means & directions illuminate K.

4.2.3.2 For each side of relbd(B), suppose that there exists another side parallel
to it. Furthermore, suppose that at least one wall through a side of
relbd(B) is degenerate.
Let [u,v] < relbd(B) be a side with endpoints u,v such that Wy, = [u,v]. Denote
the other side of B parallel to [u,v] by [w,z] where the points u,v,w and z follow each
other in this order when travelling counter-clockwise on relbd(B), starting at the point u.
Since the sides [u,v] and [w,z] are parallel, there exists a real number A > 0 such that
w—z="Fh(v—u). Let p=1(w+2z)and let g = 1 (u+v). Moreover, let ¢ denote the
supporting line of B at the side [z, w]| and let ¢ be the supporting line of B at the side
[u,v]. It follows that ¢ and ¢ are parallel and therefore, there exists a vector t # o such

that ¢/ = ¢ + t.
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Proposition 4.2.3.2.1. The directions p — u and p — v will illuminate the side [u,v].

Proof. As established in Properties 4.1.1, B is convex. It follows that [p,u],[p,v] € B.
Suppose for a contradiction that [p, u] < relbd(B). Then, there exists a supporting line of B
which contains the closed line segment [p, u]; denote it by ¢;. Recall that p is the midpoint of
the side [w, z]. Therefore, the lines ¢ and ¢; support B at p. It follows from Theorem 2.2.2.1
that ¢; is not parallel to £ or £’ since it intersects these lines at the points p and u, respectively.
Notice that ¢; = {p + A(u—p) | A e R}. It follows from Theorem 2.10.1.3 that B should
be completely contained in one of the closed half-spaces determined by ¢;. However, notice
that the points p, u, w = p+ 2(v—-u),g=u+3(v—u), and v = u+ (v —u) lie in
the closed half-space {p + A (u—p) + p (v —u) | A\, x € R such that ;> 0} determined by
(1, but the point z = p+ g (u—v) € B does not lie in the same closed half-space determined
by ¢;. This is a contradiction. Therefore, (p,u) & relbd(B) since p,u € relbd(B). Recall
from Properties 4.1.1 that B is closed and has non-empty interior in the x;x9-plane. This
means that B = relint(B) u relbd(B). Also, recall that relint(B) n relbd(B) = ¢J. Thus,
(p,u) < relint(B) < int(K). A nearly identical argument can be used to show that (p,v) <
relint(B) < int(K).

intersect relint(B) < int(K). In other words,

This implies that the rays rj_, and 75 |

the direction p — u illuminates the point u and the direction p — v illuminates the point v.

Let x € (u,v) be arbitrarily chosen. This means that there exists 0 < @ < 1 such that

X

x = 0u + (1 —9)v. Consider the point x + 9 (p — u) on the ray r3_:

x+0(p—u)=0u+(1—-0)v+0(p—u)

=0p+ (1—-0)ve (p,v) < relint(B).
This means that direction p — u illuminates all points in the open line segment (u,v). W

A similar argument to the one used in the proof of Proposition 4.2.2.2.2 can be used

to show that there exists a real number y’ > 0 such that the directions p —u and p — v
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illuminate the set Wy reba(s) + B (0, X), which is an open neighbourhood around the side
[u, v] on the bd(K).

Then, by Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists
points a, b € relbd(B) N (Wg/melbd(g) +x'B (0, 1) ) such that the points p,z,a,u,q,v,b and
w follow each other in this order when travelling counter-clockwise on relbd(B) starting at
p. Moreover, the line passing through a and b is parallel to ¢ and ¢'. By Lemma 4.2.2.1.12,

the directions 1 (q +a) —b, 1 (q+b) —a, < — 12—455) (3 (q+a)—b) + Tes and

(1-242) ((a+b) — ) = Tey will luminate bd(K)\(Wonwenacs) + B (0,1) ).
This means that the eight directions p—u, p—v, 3(q+a)—b,5(q+b) —a,
( - ﬁ) (1 (q+a)—b) + Te; and <1 - 2(175)> (3 (g +b) —a) + Te;s illuminate bd(K).

1+€ 2—¢

4.2.4 Third Major Case of Theorem 4.1

Recall from Properties 4.1.1 that B is a convex body in the xjxo-plane. It follows that B
is a convex body in E2?. By the John- Lowner Theorem in E?, there exists a unique ellipse
£ of maximal volume such that &€ ¢ B < 2&. It follows, by definition, that there exists an

invertible linear transformation 7 : E? — E? and a vector a € E? such that
& =T (B*[o,1]) +a.
Let T" : E* — 3 be the linear transformation induced by the 3 x 3 block matrix

T 0

0 1

and let a’ = (a,e;ye; + (a,ez)ey; where e; and e, are two of the standard basis vectors of

E3. Then, in the z29-plane of E3,

& =1 (Bo,1] n (B2 x {0}) ) + .
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It follows from (ii) of Properties 3.3.2 that det(T") # 0 since T is invertible. This together
with (iv) of Properties 3.3.2 imply that det (7") = det(T) det(1) = det(T") =+ 0. Therefore,

the linear transformation 7" is also invertible. It follows from (xi) of Properties 2.3.1 that

o T-1 0
(") =
0 1
Apply the linear transformation
11—
e 270
0 1

to K.
It will be shown that the convex body T*(K) is affine plane symmetric about the zz5-

plane. Let t;,ty € E? denote the rows of the 2 x 2 matrix 7. Then, for some arbitrarily

chosen k € K,

11t 11t o
T*(k):<5 ! ,k>e1+<§ ? ,k>e2+< ,k>e3
0 0 1

Since K is affine plane symmetric about the z;x5-plane, by assumption, it follows that there

exists k' € K such that 3 (k+ k') € B and k' € {k + Xe3 | A € R}. Therefore,

1 1 1|t 1|t o
_(T*(k)+T*(k')):— Uk Ve + (2] 7k Ven + k ey
2 2 2 2
0 0 1
1|t 1|t
< ! >e1+< ? >e2+< ,k/>63
0
]' / /
= 5 ] (k+K) >e1+< k+k)>
o

1
+4 = (k+k’)>
2 1 "2

—7 (= (k+ k’)> e T*(B).

VR
N | —
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Moreover, there exists some X' € R such that

T*(K) = T* (k + Ney)

1|t , 1|t , o
= 5 Jk+ Neg Yer + 5 Jk+ Nes Yey +
0 0 1
1|t 1|t
:T*(k)+x<5 ' ,eg>el+x<5 ? ,e3>e2+x<
0 0

— T (k) + Ney € {T*(k) +es | Ae R} .

Finally, notice that

T (&) =T" (T' <B3[o, 1] n (E* x {0})) + a’)

_ T (133[0, 1]~ (E2 x {0}) ) LT (a)

R k + )\/93> €3

o
,€3 )€3
1

then, by (z) Properties 2.3.1,

where the first term,

%In 0 30 A 2)( *a/
. (B0, 1] ~ (B2 x {0}) ) +T" ().
%In 0 30, 1] N (E? x

. (B[o.1] (B2 x {0}) ).

is a disc of radius Y/, in the zxo-plane. Likewise, 7 (2€) will be a disc of radius 1 in the

x1zo-plane. Of course, T*(€) < T*(B) < T*(2€) as a result of Proposition 2.4.1.

Since the illumination number is invariant under linear transformation and 7™ preserves

the affine symmetry of K, K

is hereinafter assumed to be transformed by T*. However, for

convenience, K and all of its subsets will retain their original notation.

Accordingly, suppose that
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(i) relbd(B) contains at least one side and for each side of relbd(B), there exists

another side parallel to it;

(ii) each side of relbd(B) is non-degenerate;

1

(iii) there exists a side of relbd(B) whose length is less than 3

By (iii), relbd(B) contains a side of length less than 1; denote it by [u, v]. Let ¢ denote
the supporting line of B at [u,v] and let q = % (u+v). It follows from above that a disc
of diameter 1 with center c is completely contained in B. Then, there exists a closed line
segment parallel to [u, v] in relint(B) whose midpoint is ¢ and whose length is twice longer
than the segment [u,v]; denote it by [n, m] where the points u, v, m,n follow each other
in this order when starting at the point u and travelling counter-clockwise on relbd(B).
It follows from (i7) that [u,v] is non-degenerate and therefore, contains cliff points. Let

k € [u, v] be chosen so that
|k* — k™| = max {|[f* — £~ | for all cliff points f € [u, v]}.

Let p; € [n, m] be chosen so that p; = n+ 2 (k — u) or equivalently, py =m+2(k —v). It
follows from Lemma 4.2.1.2 that the directions (p; — k) — (k™ — k) and (p; — k) — (k™ — k)
illuminate Wy v

A similar argument to the one used in the proof of Proposition 4.2.2.2.2 can be used to
show that there exists a real number x’ > 0 such that the directions (p; — k) — (k™ — k) and
(p1 — k) — (k™ — k) illuminate the set Wy ~reba(s) + B (0, x), which is an open neighbourhood
of Wiy,v) on the bd(K).

Then, by Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists
points a, b € relbd(B) n (Wg/mrelbd(B) +x'B(o,1) ) such that the points u, q, v, b and a follow
each other in this order when travelling counter-clockwise on relbd(B) starting at u. More-
over, the line passing through a and b is parallel to the support line ¢'. By Lemma 4.2.2.1.12,

the directions § (q +a) — b, 5 (q + b) —a, < — 12—f£> (3 (@ +a) —b) + Tes and
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(1-22) (4 (a+b) — a) + Tey will illuminate bd(K)\(Werrea) + X'B(0,1)).

This means that the eight directions 1 (q+a) — b, 3 (q+b) —a, (p1 — k) — (k" — k),
(p1 — k)— (k™ — k), ( — f—f,é) (3 (q+a) —b) £Tezand <1 - 2(2%5)) (3 (q+b) —a)+Tes,

and will illuminate bd(K).

4.2.5 Fourth Major Case of Theorem 4.1

In this fourth case, suppose that

(i) relbd(B) contains at least one side and for each side of relbd(B), there exists

another side parallel to it;
(ii) each side of relbd(B) is non-degenerate;

(iii) each side of relbd(B) has length at least 1.

By assumption, relbd(B) contains at least two sides. Let [u,v] be an arbitrary side
of relbd(B) and let [w,z]| be the side nearest to [u,v] when travelling counter-clockwise
on relbd(B). Moreover, let the points u,v,w and z follow each other in this order when

travelling counter-clockwise on relbd(B), starting at the point u.

4.2.5.1 Suppose that v # w.
Since [w,z] is the side nearest to [u,v] when travelling counter-clockwise on relbd(B),
[v,w]p does not contain any sides. As mentioned in §4.2.2, smooth points are dense in
relbd(B). So, let p € (v, w)p be some arbitrary smooth point. Denote the unique supporting
line of B at p by £. The complete antipode A(p) is either a single point or a side of B.

If the complete antipode A(p) is a side of B, then by condition (i) there exists another
side parallel to it in relbd(B). It follows from Theorem 2.10.1.2 that the convex body B is
supported by exactly two lines, which means that p must lie on a side in [v, w]g. This is a

contradiction.
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Therefore, A(p) is a single point, which we denote by q. If q is a ground point, K can be
illuminated using the same procedure as in §4.2.2.1. If q is a cliff point, the same procedure
as in §4.2.2.2 can be used to illuminate K.

This takes care of the sub-case where between any two sides in relbd(B), there is an arc

containing no sides.

4.2.5.2 Suppose that v =w.

It follows that relbd(B) is composed of only sides.
Lemma 4.2.5.2.1. B is a polygon.

Proof. Since relbd(B) is made up of sides each of length at least i, relbd(B) has finitely

many sides. These sides are 1-dimensional polytopes and by definition can be expressed as
the convex hull of finitely many points. This implies B has finitely many extreme points.
Since B is compact and convex, the Krein-Milman Theorem implies that B can be expressed
as the convex hull of its extreme points. Therefore, by definition B is a polytope. In

particular, B is a polygon since dim(B) = dim (aff(B)) = dim(E? x {0}) = 2. |

Moreover, B is a 2n-gon where n > 2, due to supposition (i). Note that all remaining cases

are sub-cases of §4.2.5.2.

4.2.6 First Featured Subcase of Theorem 4.1

Suppose that

(i) relbd(B) contains at least one side and for each side of relbd(B), there exists

another side parallel to it;
(ii) each side of relbd(B) is non-degenerate;
(iii) cach side of relbd(B) has length at least 3; and

(iv) B is a quadrilateral.
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It follows from (i) & (iv) that B must be a parallelogram. Label the vertices of B by v;,
for i € Z4 in a counter-clockwise fashion so that the vertices v; and v;,; are adjacent. Since
relbd(B) is a simple closed curve, it should be clear that the sides [v;, vi1] and [vii2, Viis]
of relbd(B) are parallel, for any i € Z4. In this case, non-adjacent vertices are called opposite

vertices.

4.2.6.1 Suppose all the vertices of B are cliff points.

Recall that 7 = max {|[k™ — k|| | k € K}, where k* is the endpoint of the non-degenerate
line segment Pr(k) n K lying in Hy and k™ is the other endpoint of that line segment lying
in H_. Then, the eight vectors (v; — vii2) £ Tes, (Viz1 — Vizs) £ Tes, (Viza — Vi) = Tes

and (Vi3 — v;41) = Tes illuminate bd(K).

4.2.6.2 Suppose that one vertex of B is a ground point and that the other three
vertices of B are cliff points.

Let q denote the vertex of B which is a ground point and denote its opposite vertex by p.

Let ¢’ be a supporting line of B at q such that ¢ does not support any sides of B. There

exists supporting line of B at p parallel to ¢'; denote it by £. However, note that ¢ and ¢’ are

not unique. A nearly identical proof to the one used in §4.2.2.1 can be used to show that the

seven directions p —q, 5 (q+a) —b, 3 (q+b) — a, ( — %) ( (q+a)—b) + Te; and

<1 B 2(21:55)) (% (g +b)— a) + T e3 illuminate bd(K).

4.2.6.3 Suppose two adjacent vertices of B are ground points and that the other
two vertices of B are cliff points.

Then, there exists some i € Z,4 such that the vertices v; and v; 1 are ground points. The eight

vectors (Vize — Vi), (Vizs — Vi), (Vigg — vi) £ Tes, (vi — viso) £ Tegand (vipg — virg) £ T e

illuminate bd(K).
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4.2.6.4 Suppose two opposite vertices of B are ground points.
Then, there exists some ¢ € Z, such that the vertices v; and v;,, are ground points. The
eight vectors Vi o — Vi, Vi— Viya, Viss— Vi, Vi—Viis, (Vieg — v;) 2 Tez and (v; — v;3) = Tes

illuminate bd(K).

4.2.7 Second Featured Subcase of Theorem 4.1
Suppose that

(i) relbd(B) contains at least one side and for each side of relbd(B), there exists

another side parallel to it;
(ii) each side of relbd(B) is non-degenerate;
(iii) each side of relbd(B) has length at least 3; and
(iv) B is a 2n-gon, for any n > 4.

4.2.7.1 Suppose that two consecutive vertices of B are cliff points.
Let u and v denote two consecutive vertices of B which are cliff points. Denote the supporting
line of B at the side [u,v] by ¢ and let [w, z] be the side parallel to [u, v] where the points
u,v,w and z follow each other in this order when travelling counter-clockwise on relbd(B)
and starting at the point u. Let q = % (u + v) and denote the supporting line of B at [w, z]
parallel to ¢ by . Moreover, let the supporting lines of the sides adjacent to [u, v] by £}
and ¢*. The lines ¢! and ¢* are not parallel; denote their intersection point by m and notice
that m ¢ B. Then, there exists x’ > 0 such that the directions (@ — m) + 7 es illuminate
the open neighbourhood Wy rreibacsy + X'B (0, 1) on the bd(K).

By Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9, there exists points
a,b € relbd(B) n (Wg/melbd(B) +x'B (o, 1) ) such that the points u, q,v,b, w,z and a follow
each other in this order when travelling counter-clockwise on relbd(B) starting at u. More-

over, the line passing through a and b is parallel to the support line ¢. By Lemma 4.2.2.1.12,
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the directions  (q +a) —b, 5 (q+b) —a, ( — %) (3 (@ +a) —b) + Tes and

<1 2(21 f)) ( (q + b) — a) + Teg will illuminate bd<K)\(W€’mrelbd(B) + X,B (O, 1) )
This means that the eight directions (q —m) + Te3, 5(q+a) — b, 1 (q+b) — a,

1
2

1+¢€

4.2.7.2 Suppose there exists a pair of parallel sides [u,v] and [w,z] of relbd(B),
where the vertices u, v, w and z follow each other in this order when
starting at the vertex u and moving counter-clockwise on the relbd(B),
such that either u and w are ground points or v and z are ground points.
Suppose without loss of generality that the vertices u and w are ground points. Let ¢ and
¢" be the supporting lines of B chosen so that £ n B = {u} and ¢’ n B = {w}. Moreover,
suppose that ¢ = {u + M | A e ]R}. Then, the eight directions +d, d + Tes, —d + Tes,

w —u and u — w illuminate bd(K).

4.2.7.3 Suppose that vertices of relbd(B) alternate between cliff and ground
points.
Note that this case is distinct from §4.2.7.2) only if n in (iv) is odd. Namely, §4.2.7.2 does

not include this case if B is a decagon, or if B a 14-gon, etcetera.

4.2.8 Third Featured Subcase of Theorem 4.1

Suppose that

(i) relbd(B) contains at least one side and for each side of relbd(B), there exists

another side parallel to it;
(ii) each side of relbd(B) is non-degenerate;

(iii) each side of relbd(B) has length at least 3; and
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(iv) B is a hexagon.

4.2.8.1 Suppose that two consecutive vertices of B are cliff points.

In this case, K can be illuminated using the exact same procedure as in §4.2.7.1

4.2.8.2 Suppose there exists a pair of parallel sides [u,v] and [w,z] of relbd(B),
where the vertices u, v, w and z follow each other in this order when
starting at the vertex u and moving counter-clockwise on the relbd(B),
such that either u and w are ground points or v and z are ground points.

In this case, K can be illuminated using the exact same procedure as in §4.2.7.2.

4.2.8.3 Suppose that vertices of relbd(B) alternate between cliff and ground
points.

Let Hy be a regular hexagon. Label its vertices by v; for ¢ € Zg in a counter- clockwise
fashion such that v; and v;,; are consecutive vertices. Choose one pair of parallel edges
from Hy, say [vo,v1] and [vs3,v4]. Let H be the hexagon obtained from taking the convex
hull of the point set {vl, Vo, V3, Vo+ A (Vo — V1), Va+A(vg— V1), vs+ A (v — vq) }, for some
scalar A > 0. Notice that the length of exactly one pair of parallel sides from the hexagon
Hy are scaled by A > 0 and the rest of the sides have the same length.

Case 1: Suppose that B is not an affine image of H. The following observation plays

an important role in the proof of Lemma 4.2.8.3.2.

Proposition 4.2.8.3.1. Let H be a convex hexagon in E* x {o} with the property that for
each of its sides, it has another side parallel to it. Then, there exists two triangles T and

Ty such that H = Ty n Ty where Ty = NT} +t for some X\ < 0 and vector t € E3.

Proof. Let the sides of H be labelled by S;, where i € Zg, so that the sides S; and S;,; are
adjacent. Let the vertices of H be labelled by v;, where i € Zg, such that v; and v, 1 are

consecutive vertices and S; = [v;, Vi41].
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Claim: The sides S; and S; 3 are parallel: adjacent sides are not parallel and there does
not exist any i € Zg such that the sides S; and S; o are parallel.

Suppose for a contradiction that there exists a pair of adjacent sides 5; and S;,; that
are parallel. This means that there exists £ € R such that v;41 — v; = £ (V442 — Vi41). Both
sides share the vertex v; 1. Let ¢; and ¢; 1 denote the supporting lines of H at S; and S; 1,

respectively. Notice that
li=A{viz1 + A(Vign — Vi) [ Ve R}
= {Vig1 + X (Viga — Vi) | A e R} = 4544,

Since the supporting lines ¢; and ¢;,; are not distinct, this means that either S; = S;1 or
S; U S;y1 is a side of H. In either case, this would imply that H has only five sides, which
is a contradiction.

Suppose for a contradiction that there exists ¢ € Zg such that S; and S;,» are parallel.
Let ¢; and /; 5 denote the supporting lines of H through the sides S; and S;, 9, respectively.
Then, ¢; and ¢; 5 are parallel. It follows from Theorem 2.10.1.2 that no other supporting line
of H is parallel to ¢; and ¢;,5. Therefore, one of the sides S;, 3, S;44 or S;,5 is parallel to S;, 1,
since H has the property that for each of its sides, there exists another side of H parallel
to it. Moreover, the remaining two sides of H must be parallel to each other. Therefore, if
Si+3 were parallel to S;,q, the sides S;;4 and S;;5 would have to be parallel to each other.
However, it was shown above that adjacent sides cannot be parallel. So, this case cannot
occur. Likewise, if S;,5 were parallel to S;; 1, then the adjacent sides S;,3 and S; ;4 would
have to be parallel to each other, which is not possible.

If the side S;,4 is parallel to S;,1, then the sides S;,3 and S;,5 must be parallel to each
other. This means that there exists some & € R such that and v; 3 — v;14 = & (Vizs — Vi).
It follows from Theorem 2.10.1.3 that H must lie between its supporting lines ¢; and ;.
The vertices v; 1 and v, of the side S; ;1 lie on ¢; and ¢, 5, respectively. Also, the vertices
v; and v;, 3 lie on the lines ¢; and ¢;,; therefore, the vertices v; 4 and v; 5 must lie strictly

between the supporting lines ¢; and /; 9, otherwise H would be a quadrilateral. This means
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that there exists 0 < £ < 1 such that v, 5— vy = £ (Viy1 — Vis2). Therefore, the supporting

line of B at S;,3 is of the form

livs = {Viea + N (vi = Vigs) | NE e R}

= {Vi + é(VZ'+2 — Vi+1) + (1 - )\/5/) (Vi+5 — Vi) | 1— )\/5/ € R} .
Notice that the point on the supporting line ¢;, 3,

1 .
Viea + =& (Vi = Vigs) = Vi + £ (Vig1 — Vig2) + (Vizs — Vi) + (Vi — Vigs)

g/

=V +&§(Vig1 — Viga)
also belongs to (v;, viy2). By the convexity of H and Proposition 2.10.6,
CONV {Vi, Vip1, Viga, Viss} S H
and hence, [v;,v;1o] € H. The line ¢;,3 determines two open half-spaces:
o, = {z EE? |2 =vi + A(Visa — Vir1) + (1 = AE) (Viss — Vi), A> &, 1 N¢' e R}
and

€;+3:{Z€E3|Z:Vi+X(VZ'+2—Vi+1>+(1—>\£/)(VZ'+5—V1'>, X<£, 1—)\/£/ER}.

’

13 and the point v; of

Since 0 < € < 1, the point vi4o of H lies in the open half-space ¢

i+3- This means that ¢; 3 strictly separates two points of H,

H lies in the open half-space ¢
which contradicts that it is a supporting hyperplane of H. Therefore, the sides S; and S,
cannot be parallel.

Hence, the sides S; and S;, 3 are parallel for any ¢ € Zg.

Lemma 4.2.8.3.2. Let B be a hexagon such that

(i) for any side of B, there exists another side of B parallel to it;
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(ii) B is not the affine image of a hexagon obtained by scaling the lengths of exactly
one pair of parallel sides from a regular hexagon by a scalar A = 0 while

preserving the other edge lengths.

Then, relint(B) contains a line segment [n, m] such that m —n = 2 (v —u), for some side

[u,v] € relbd(B).

Proof. 1t follows from Proposition 4.2.8.3.1 that there exist two triangles 77 and 75 such
that B = Ty nTy and T, = AT7 + t for some A < 0 and t € E™. If the triangles T} and
T, are not regular, apply an affine transformation to K so that the triangles 77 and 75
are regular. Denote the center of T} by z and its vertices by a;,b; and c; so that they
follow each other in this order when travelling counter-clockwise on the relative boundary
of Ty. Without loss of generality suppose that T, = AT} + t, for some —1 < A < 0 and
label its vertices by as, by and cy so that a, = Aa; +t, by = Ab; +t and ¢y = Ac; + t.
The triangle Ty = —T + 2z has the same center as 7T7; denote its vertices by ag, by and
co so that ag = —a; + 2z, bg = —b; + 2z and ¢ = —c; + 2z. Note that 75 cannot
have the same center as 77 and Tj, otherwise the hexagon B = T7 n T, would be regular
and this would violate condition (i) of Lemma 4.2.8.3.2. In particular, this means that
Ty € Ty. One of the sides of T5, intersects the regular hexagon T} n Ty. Suppose without
loss of generality that the side [ay, by] N (17 N Ty) # &. The line {ag + p(by — az) | p € R}
intersects the line segments [ag, b;] and [bg,a;]| of the parallelogram conv {a;, by, ap, bo};
denote the points of intersection by a’ and b, respectively. Suppose without loss of generality

that ||ag — z| < |bs — 2|.
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Figure 4.12

Observe that ay € conv{aj, by,ag, bg}. Let {x} = [bg,a9] N [c1,bs]. Then, a lies in the
triangle conv {x, ag, b;}. Let the triangle 7" with vertices a’, b’ and ¢’ denote the translate

of Ty by a’ — ay. Label the intersections of various line segments in the following way:

{u} = [by,c1] n[a',b]; {w} =[bi,ci]n[ag,co]; {Vv}=[b1,c1] N [az,ca];
{s} =[br,c] n[a’,c];  {r}=[ag,co] n[a',b]; {m} =[a;,bi] N [ag,co;

{m} = [a;,b1] N [az,co]; {0} = [a1,¢1] N [ag,bo]; {n"} = [p2,q2] N [a',b].

Let n € [ay, bo] be chosen so that the chord [n,m] of B = T} n T} is parallel to its side

[u,v]. The chord [n, m] is the longest chord of B. Denote |x —u| by 2¢ < |x —by]|. Notice
o e L Y [ T

that |w — s|| = ¢. Therefore, 2 = =
[w —x| [w —x| p+ s —u}
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implies that m —n = 2 (s — u). Also, [s—u| > |v—u]. This means that m—n > 2 (v — u).
Finally, (n,m) < int(X).
|

Recall that [u, v] is non-degenerate and in fact, either u or v is a cliff point. Let k € [u, V]

be chosen so that
k" — k|| = max {|f* — || | for all cliff points f € [u, v]}.

Let p; € [m,n] be chosen so that py —n = 2(k —u) and m — p; = 2(v — k). Then, by
Lemma 4.2.1.2, the directions (p1 — k) — (k™ — k) and (p1 — k) — (k™ — k) illuminate W, ).

By Proposition 4.2.2.2.2, there exists a real number x’ > 0 such that the directions
(p1 — k) — (k* — k) and (p; — k) — (k™ — k) illuminate an open neighbourhood of W, ] on
the boundary of K, Wy + X'B (0,1).

It follows from Lemma 4.2.2.1.3, Proposition 4.2.2.1.8 and Proposition 4.2.2.1.9 that
there exists points a and b in this open neighbourhood such that the line between them
is parallel to the supporting line at the side [u,v]. Let @ = 1 (u+v). Then, by Lemma

4.2.2.1.12, the six directions 3 (q + a) — b, 5 (q + b) —a, ( - %) (3 (@ +a) —b) + Tes,

and (1 — 2<;j§>) (3 (@ +b) —a) + Te; will illuminate bd(K)\(Wuy + X'B (0,1)).

Case 2: Suppose that B is an affine image of H.
Then, there exists an affine transformation 7' : E" — E" such that B = T (H). It follows
from (vi),(v) and (vi) of Properties 2.4.8 that B is a hexagon with the property that both
sides from a pair of parallel sides have the same length. Label the vertices of B by b; for
1 € Zg in a counter-clockwise fashion such that b; and b;,; are consecutive vertices. Choose
one pair of parallel sides of B satisfying min {||b; — b; 41| | i € Zg} and denote them by [u, v]
and [n,m] where v,u,n and m follow each other in this order when starting at v and
travelling counter-clockwise on relbd(B). Since the vertices of relbd(B) alternate between

ground and cliff points, one may suppose without loss of generality that u and n are cliff
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points while v and m are ground points. Let k € [n, m) be the cliff point chosen so that
|k* — k|| = max {|f* — £~ | for all cliff points f € [n,m)}.

It follows that there exists some 0 < ¢ < 1 such that k = 9m + (1 — ) n. Let z € [u,v) be
chosen so that z = ¥v + (1 — ) u.

Denote the supporting line of B at the side [u,v] by ¢ and denote the supporting line
of B at the side [n, m], which parallel to it, by ¢*. It follows from Theorem 2.10.1.3 that B
lies between ¢! and ¢*. In particular, the other two vertices of B must lie strictly between ¢

and ¢*, otherwise B would be a quadrilateral.

Figure 4.13: One of the remaining two vertices of B must lie in the region R; and the other

must lie in the region R,.

By Proposition 2.10.6, conv {u, v,n,m} < B. The other two vertices of B cannot lie in or on
conv {u, v,n, m}, otherwise B could not be a convex hexagon. Moreover, it follows from the
Claim in Proposition 4.2.8.3.1 that neither the closed segment [m, v] nor the closed segment
[u, n] can be sides of B; namely, one of the remaining two vertices must lie to the right of the

line segment [u, n] when travelling counter-clockwise on relbd(B) and the other vertex must
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lie to the right of the line segment [m,v] when travelling counter-clockwise on relbd(B).
This together with Lemma 2.10.13 implies that (m,v) < relint(B) and (u,n) < relint(B).
Denote the vertex of B between u and n by d and denote the vertex B between m and

v by c. Then, there exists k > 0 and 0 < ) < 1 such that
c=v+r(v-—u)+y(m-v).

Since all parallel sides have the same length, it follows that m—n = v—uandc—v = n—d.

Therefore, m — v = n — u. Also,

d=n+(v-c)
=u+(n—u)+k(u—v)+¢y(v—m)
=u+(1—-¢Y)(n—u)+r(u—v).

(1-9)(1 -9

K

The point k +

(k — z) is where the line passing through the points k and z,
{z+ \(k—2) | X € R}, intersects the line passing through the points m and c. To see this,

first notice that

k—z=n+J(m-n)—n+9J(u-v)

=n—u+d(v-u)+d(u—v)=n—u=m-—v.

Then, observe that ¢ = m + k(v —u) + (1 —¢) (m — v). Re-arrange the equation to get

that
m—v=ﬁ(m—c)+1f¢(v—u)
:ﬁ(m—c)n’jwm—n). (4.33)
Finally, observe that
k+(1_§¥1_ka—z) (4.34)
“ms () )+ S (g )
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=m+(1-9Y)(n—m)+ (1 —-7)(m—n)+

=m+Tﬂ(m—c)e{c+X(m—c)|)\’€]R}. (4.35)

(1=9) (=)
K
direction m + v/ (¢ —m) — (k + v (k —z) ) intersects relint(B) for 0 < v/ < 1 and only

Claim 2: For any v > , the ray through the point k + v (k — z) with
intersects B at the boundary point ¢ for v/ = 1.

Let 0 < v/ < 1 be arbitrarily chosen. Since (m,v) € relint(B) and 0 < ¢ < 1, it follows that
the point v + ¢ (m — v) € relint(B). Since ¢ € relbd(B) it follows from Theorem 2.10.10

that (c,v + ¢ (m — v)) € relint(B). Observe that

k+vk—z)+ (1+ <1_w>(1_yl)) (m+1/(c—m)—(k+u(k—z))>

v

=k+v(k—2z)+ (1—|— (1_1/,)(1_,/)) (1-9)(m—n)+v(c—m)+v(z—k))

14

sy (U000

14

)<m—n>+<1—w><1—u'><z—k>+u’<1—w><v—m>

+ 'k (m — n)

() v —m) + (( w><1—u'><1—ﬁ>+y,ﬁ)<m_n)

1—

:< (1_V,)< w)(1;VV)(1—19)>)C

L (1) (1_ (1_“(1_”')(1_’9))(v+¢(m_v)).

= 1—1/ </<a
v
1—1/ (

RV

To see that the point, above, on the ray through k+v (k — z) with direction m+7' (¢ — m)—

(k+ v (k — z) ) belongs to the open line segment (¢, v + 1 (m — v)) < relint(B), verify that

=900

RV

0<<1—y')<1—

(1-0)(1-7)

R

Since K > 0 and v >

, it follows that kv > (1 —9) (1 —¢). It follows from
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0 <t <land0<9 <1 that
0<l-v<1 and 0<1-9<1. (4.36)

Since 0 < v/ < 1, it follows that 0 < 1 — v < 1. This together with (4.36) and Corollary A.2
implies that

kv>(1-9)1-9)>1-¢)1-v)(1-9)>0. (4.37)
This means that

kv —(1—) (1 =) (1—-9)>0. (4.38)
Notice that

w(1- 4290109

RV

>_W_(1—¢)<1—y')<1—19)>o.
1-¢)1-r)A-9)

RV

0w (1- 0=y

In particular, this implies that 1 — > 0, since kv > 0, by (4.37).

Therefore,

RV

Also, notice that

fw<1—<y—ﬂ_w”1_wﬂl_w>)=41—¢M1—MM1—ﬁy>Q

RV

(1 (1- 4 ona oy

1-¢)(A-v)(A-1)

RV

This means that

< 1.

since kv > 0. Re-arrange the above inequality to get that 1 —

This together with Corollary A.2 implies that

(1_1//) (1_(1_¢)(1_V/)<1_ﬂ)

<(1-7)<1

- ) <a-v)

Hence, the ray through the point k+v (k — z) with direction m+2/ (¢ — m)— (k+v (k — z) )
intersects relint(B) for 0 < v/ < 1.

Let v/ = 1.
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(1=9) (=)
- :
Then, let po = k + (k—2) and let p; = z. Choose d; = (z—k) + (k—k*) and dy =

Sub-case (a): Suppose that 1 >

(z—k) + (k — k™). Notice that p, ¢ B and k = 1 (p; + pa).
Let x € Wn,m) be arbitrarily chosen. It follows that Pr(x) € [n,m) and therefore, there

exists 0 < U < 1 such that Pr(x) = On+ (1 - O)m. If x € (Wnm)), \[n,m), then there

+

1
exists 0 < 2 < 1 such that x—Pr (x) = Q (k™ — k). This means that k™ —k = ) (x — Pr(x))

1
where Q > 1. The ray passing through x with direction d; contains the point

x+Q(d)) =x+Q[(z—k) + (k- k*)]
=x+Q(v—-—m)— (x—Pr(x))
=UOn+(1-0O)m+Q(v—m).
The points v+ (1 — Q) (m — v) € (m,v) and u+ (1 — Q) (n — u) € (u, n) belong to relint(B)
since (m,v),(u,n) < relint(B) and 0 < 1 — Q < 1. It follows from Corollary 2.10.11 that

v+ (1= m-v),u+ (1-9)(n—u)) < relint(B) and observe that it contains the

point
1-0)(v+(1-Q)(m-v))+0(u+(1-Q) (n—u))
=v+0(u—-Vv)+(1-Q(m-v)-0(1-Q(m-v)+0(1-9)(n—u)
=m+(v-m)+(1-Q)(m-v)+0(n—m)
=0n+(1-0O)m+Q(v—m).
Thus, x + 2 (d;) € relint(B) < int(K). This means that the direction d; illuminates x.
Ifxe (W[mm))_ \ [n, m), then a nearly identical proof can be used to show that the direction
d, illuminates the point x.

If x € [n,m), then x = Pr(x) = Un+ (1 — U) m, for some 0 < U < 1. By convexity, x must

be a cliff point. Let
{x}={x—des | AeR}n ([k",m]u[n" k7]).
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Since K is affine plane symmetric, k™ —k = k — k™. So, there exists 0 < ' < 1 such that

x —x~ = (x* — k). This means that k*—kz%(x—x’) Where$>1. Observe that
1= 1=
X+ ——d;, =x+ —((z—k)+ (k—k")
1+ ¢ 1+1Q—7’”< )
1—1 1 1—1 ,
:X+—_(V—m)——,<—_>(X—X)
1+ @A+
- 1 1-¢ 1— 4 1 1=\ _
_<1 oliits) ) et m)+9’<1+15—f”)x
- 11— 1 1-¢ )
_<1_Q' e (X~|—(1—¢)(V—m))+Q/(1+1Q}p)x
11—
:<1_ﬁ e ((1—6)(V+w(m—v))+U(u+w(n—u))>
! 1—w>_
+ 5 — X .
Sub-case (b): Suppose that 1 < (L= - @Z)).
(1-9)(1 -9

Then, choose some v > . Let ps be the point k+v (k — z) on the line through

K

the points k and z. Also, let p; be the point z+ (1 — v) (k — z) on the line through the points

k and z. Choose d; = (p1 — k) + (k—k*) =v(z—k) + (k—k") and dy = (p; — k) +

(k—k7) =v(z—k)+ (k—k). Notice that /5 (p1 + p2) = Ya(z+ (1 —v) (k—2z) + k +
k.

vik—2z)) =
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Chapter 5

Conclusion

B.V. Dekster proved that illumination conjecture holds for 3-dimensional convex bodies with
affine plane symmetry [21]. His proof cleverly combined theory from elementary geometry
with non-trivial results from convex analysis. This thesis re-examined his work and used it
as a prototype for a more detailed proof of some cases, while at the same time correcting

some minor flaws in the original proof.
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Appendix A

Elementary Number Theory

Proposition A.1. Let A\ and p be real numbers such that 1 = X = 0 and p = 0. Then,
A< [t
Proof. Suppose 0 < A < 1. It follows that 1 — X\ > 0. Also, suppose 1 = 0. The product

of two non-negative numbers is non-negative. Therefore, it follows that p (1 — A) = 0. Re-

arrange this inequality to get Ap < p. [ |

Corollary A.2. Let A and p be real numbers such that 0 < A\, u < 1. Then, A\u < p and

A< A

Proposition A.3. Let A1, Ay and A3 be real numbers such that A3 = Ay and Ay, A3 > 0.

Then,
AL+ )\2 < A1

Az + A2 A3
Proof. Suppose A3 = A\; and A3 > 0. Then, A3 — A\ = 0. Recall that the product of two

non-negative numbers is a non-negative number. Therefore, A\2 — A3A\; = A3 (A3 — \{) = 0.

Observe that
1 )\g A3\

)\—S(Ag—kg)q):)\—g)— " =3 — A1 = 0.

Also, recall that a non-negative number can either be written as the product of two non-

1
negative numbers or the product of two non-positive numbers. It follows that = = 0.
3

Furthermore, suppose Ay > 0. It follows that AgAa—A1Ae = Ay (A3 — A1) = 0 and A3+ Ay >
0. Also, it follows that A3 + Ay = A; + A2. This inequality can be re-arranged as (A3 + Ag) —

(A1 + A2) = 0. Use the property of the product of non-negative numbers mentioned above to

get (A3 + A2)” — (Ag + Aa) (AL + A2) = (A3 + A2) (A5 + A2) — (A1 + A2)) = 0. Observe that

(M3 4+ X2)? = A3+ A2) (A1 +X2)) = (A3 + Aa) — (M1 + A2) = 0.

A3+ Ao
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It follows that

> 0. Thus,
)\3+/\2 s

111

— = 0.
A3 A3+ Aa) Az A3+ Ao

Hence,

A+ A A1 _ A3 ()\1 + )\2) -\ ()\3 + )\2)

A = (A3\2) -
it N Az (A3 + A2) (Aahe)
Re-arrange this inequality to get
AL+ Ay . A .
A3+ A A3
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